a) Bạn tự giải
b) Ta có: \(\Delta'=m^2-5\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\)
Vậy ...
a) Thay m=2 vào pt, ta được:
\(x^2-2\left(2-1\right)x-2\cdot2+6=0\)
\(\Leftrightarrow x^2-2x+2=0\)
\(\Leftrightarrow x^2-2x+1+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+1=0\)(Vô lý)
Vậy: Khi m=2 thì phương trình vô nghiệm
b) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-2m+6\right)\)
\(=\left(2m-2\right)^2-4\left(-2m+6\right)\)
\(=4m^2-8m+4+8m-24\)
\(=4m^2-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow4m^2-20>0\)
\(\Leftrightarrow4m^2>20\)
\(\Leftrightarrow m^2>5\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{5}\\m>\sqrt{5}\end{matrix}\right.\)