Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dưa Hấu

Cho phương trình \(x^{2017}+ax^2+bx+c=0\)  với các hệ số nguyên có 3 nghiệm \(x_1;x_2;x_3\). CMR nếu \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)\)không chia hết có 2017 thì \(a+b+c+1\)chia hết cho 2017

Nam Hải
12 tháng 3 lúc 22:58

Nhận xét rằng với mọi số nguyên \(x\), định lý Fermat nhỏ cho ta: \(x^{2017}\equiv x\) (mod \(2017\))

nên với mỗi nghiệm \(x_i\) ta có: \(x_i^{2017}+ax_i^2+bx_i+c\equiv ax_i^2+\left(b+1\right)x_i+c\) (mod \(2017\))

\(\Rightarrow ax_i^2+\left(b+1\right)x_i+c\equiv0\) (mod \(2017\))

Xét \(x_1\) có: \(ax_1^2+\left(b+1\right)x_1+c\equiv0\) (mod \(2017\)) (1)

Xét \(x_2\) có: \(ax_2^2+\left(b+1\right)x_2+c\equiv0\) (mod \(2017\)) (2)

Từ (1), (2) \(\Rightarrow a\left(x_1^2-x_2^2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow a\left(x_1-x_2\right)\left(x_1+x_2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow\left(x_1-x_2\right)\left[a\left(x_1+x_2\right)+\left(b+1\right)\right]⋮2017\)

Mà \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)⋮̸2017\),  \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2⋮̸2017\\x_2-x_3⋮̸2017\\x_1-x_3⋮̸2017\end{matrix}\right.\)

\(\Rightarrow a\left(x_1+x_2\right)+\left(b+1\right)⋮2017\) (3) (do \(2017\) là số nguyên tố)

Tương tự với \(x_1\) và \(x_3\)\(\Rightarrow a\left(x_1+x_3\right)+\left(b+1\right)⋮2017\) (4)

Từ (3), (4) \(\Rightarrow a\left(x_2-x_3\right)⋮2017\)

Mà \(x_2-x_3⋮̸2017\Rightarrow a⋮2017\) (do \(2017\) là số nguyên tố) (5)

Từ (3), (5) \(\Rightarrow b+1⋮2017\) (6)

Từ (1), (5), (6) \(\Rightarrow c⋮2017\) (7)

Từ (5), (6), (7) \(\Rightarrow a+b+c+1⋮2017\) (đpcm)

 

 


Các câu hỏi tương tự
Incursion_03
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Trương Tuấn Kiệt
Xem chi tiết
dekhisuki
Xem chi tiết
o0o I am a studious pers...
Xem chi tiết
dekhisuki
Xem chi tiết
Đồ Ngốc
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
My Phan
Xem chi tiết