hoc24 mặt tiền ghi là toán 6 đến 12 nhưng toàn thanh niên lớp 9 trở xuống thôi bác ạ
hoc24 mặt tiền ghi là toán 6 đến 12 nhưng toàn thanh niên lớp 9 trở xuống thôi bác ạ
tìm m để phương trình \(7x^3+\left(2m-9\right)x^2-\left(m^2+2m-2\right)x-2=0\) có 3 nghiệm phân biệt
Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.
\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)
\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5)
Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định và có \(f’\left(x\right)=2x\left(x^2-4\right)^3\left(x^4+16\right)^2\)
Xác định tấc cả nghiệm thực của phương trình sau: \(2f\left(\frac{1}{4}x^4+x^2-5\right)-3=0\)
a) 0
b) 1
c) 2
d) có ít nhất 3 nghiệm
tìm m để đồ thị hàm số
1) \(y=mx^4+\left(m^2-9\right)x^2+10\) có 3 điểm cực trị
2) \(y=mx^4+\left(2m+1\right)x^2+1\) có một điểm cực tiểu
3) \(y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại
Chứng minh phương trình: \(\left|x\right|^3-2x^2+mx-1=0\) luôn có ít nhất 2 nghiệm phân biệt.
xét hàm số
f(x)=\(\sqrt[4]{2x}+2\sqrt[4]{6-x}+\sqrt{2x}+2.\sqrt{6-x}\)
D \(\in\left[0;6\right]\)
f'(x)= \(\frac{1}{2.\left(2x\right)^{\frac{3}{4}}}-\frac{1}{2.\left(6-x\right)^{\frac{3}{4}}}+\frac{1}{\sqrt{2x}}-\frac{1}{\sqrt{6-x}}\)
đặt u=\(\left(2x\right)^{\frac{3}{4}}\) \(\left(u\ge0\right)\), v=\(\left(6-x\right)^{\frac{3}{4}}\) \(\left(v\ge0\right)\)
f'(x)= \(\frac{1}{2}.\frac{\left(v^3-u^3\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\frac{\left(v-u\right).\left(v^2+u.v+u^2\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\left(v-u\right).\left(\frac{v^2+u.v+u^2}{\left(u.v\right)^3}+\frac{1}{u.v}\right)\)
\(=\left(v-u\right).g\left(u,v\right)\) ... với g(u,v) > 0
Vậy f'(x) = [(√(2x) - √(6-x)] .G(x), G(x)>0
f'(x)=0 <=> √(2x) - √(6-x) = 0 <=> x=2
lập bảng biến thiên:
tự vẽ
tính f(0), f(2), f(6)
ta được f(x)=m có 2 nghiệm
<=> f(0) \(\le\)m < f(2)
<=> \(2.6^{\frac{1}{4}}+2\sqrt{6}\le m< 3.2^{\frac{1}{4}}+6\)
Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng
A. m = 0
B. m \(\le\) 0
C. m \(\in\left\{0;4\right\}\)
D. m \(\ge\) 4
Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\)
A. m \(\ge1\)
B. \(m\le1\)
C. \(0\le m\le1\)
D. \(0\le m\le\frac{3}{4}\)
Câu 3 : Tìm giá trị lớn nhất M của hàm số y = cos2x + 4cosx + 1
A. M = 5
B. M = 4
C. M = 6
D. M = 7
Câu 4 : Cho hàm số y = \(\frac{x}{x-1}\) . Mệnh đề nào sau đây là đúng ?
A. Hàm số đồng biến trên khoảng (0;1)
B. Hàm số đồng biến trên R \(|\left\{1\right\}\)
C. Hàm số nghịch biến trên \(\left(-\infty;1\right)\cup\left(1;+\infty\right)\)
D. Hàm số nghịch biến trên khoảng \(\left(-\infty;1\right)\) và \(\left(1;+\infty\right)\)
Câu 5 : Cho hàm số y = \(\frac{\left(m-1\right)sinx-2}{sinx-m}\) . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0;\(\frac{\Pi}{2}\) )
A. \(m\in\left(-1;2\right)\)
B. m \(\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)
C. m \(\in(-\infty;-1]\cup[2;+\infty)\)
D. m \(\in(-\infty;0]\cup[1;+\infty)\)
1) Tìm m để hàm số y=\(\frac{mx-3}{x+m+4}\) nghịch biến trong khoảng xác định?
2)Xác định m để hàm số y=\(\frac{2x^2+\left(m+1\right)x+2m-1}{x+1}\) tăng trên mỗi khoảng xác định?
3) Tìm GTLN,GTNN của
a) y=\(\frac{cos2x}{cosx-sinx}\) trên [\(\frac{\pi}{3}\);\(\frac{\pi}{2}\)]
b) y=sin3x +cos3x trên [0;2π]
Cho hàm số \(f\left(x\right)\) xác định trên \(R\), có đạo hàm \(f'\left(x\right)=\left(x^2-4\right)\left(x-5\right)\forall x\in R\) và \(f\left(1\right)=0\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(g\left(x\right)=\left|f\left(x^2+1\right)-m\right|\) có nhiều điểm cực trị nhất?
A.7 B. 8 C. 5 D. 6