\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2>0\Rightarrow-2< m< 2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(A=\left|2x_1x_2+x_1+x_2-4\right|\)
\(=\left|m^2-2-m-4\right|\)
\(=\left|m^2-m-6\right|\)
Do \(-2< m< 2\Rightarrow\left\{{}\begin{matrix}-m-2< 0\\m^2-4< 0\end{matrix}\right.\)
\(\Rightarrow m^2-m-6< 0\)
\(\Rightarrow A=\left|m^2-m-6\right|=-m^2+m+6\)
\(\Rightarrow A=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(A_{max}=\dfrac{25}{4}\) khi \(m=\dfrac{1}{2}\)