Cho (P) y=\(\frac{1}{2}x^2\)và hai điểm A, B thuoojcj (P) có hoành độ lần lượt là -1;2 . Đường thẳng (d) có phương trình y=mx+n
1) ttimf tọa độ hai điểm A và B . Tìm m, n biết (d) đi qua 2 điểm A ,B
2) Tính độ dài đường cao OH của tam giác OAB ( điểm O là gốc tọa độ )
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y = 1 2 x 2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là x A = − 1 ; x B = 2 .
a) Tìm tọa độ của hai điểm A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
Cho parabol (P): \(y=\dfrac{1}{4}x^2\) và đường thẳng (d) đi qua 2 điểm A, B trên (P) có hoành độ lần lượt là \(-2,\) 4.
a. Vẽ (P).
b. Viết phương trình đường thẳng (d).
c. Tìm tọa độ giao điểm M trên cung AB của (P) có hoành độ \(x\in\left[-2;4\right]\) sao cho tam giác ABC có diện tích lớn nhất.
(Thầy NVL giúp em với ạ em cảm ơn thầy nhiều ạ)
trong mặt phẳng tọa độ Oxy cho đường thẳng(d);y=mx.3 tham số m và parabol y=x mũ hai
a, tìm m để đường thẳng (d) đi qua điểm A(1;0)
b, tìm m để đường thẳng (d)cắt parabol tại hai điểm phân biệt có hoành độ lần lượt là x1 và x hai thỏa mãm /x1 - x hai/ bằng hai
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Rương mặt phẳng tọa độ Oxy cho parabol : \(y=-\frac{1}{4}x^2\) dường thẳng (d): \(y=2x+4m-1\)
a) Tìm m để (d) cắt (P) tại 2 điểm phân biệt A và B. Tính diện tích tam giác OAB theo m
b)Gọi M là điểm thuộc (P) có hoành độ x=2. Lập phương trình đường thẳng đi qua điểm M đồng thời cắt trục hoành trục tung lần lượt tại 2 điểm phân biệt A và B sao cho diện tích tam giác OMA gấp đôi diện tích tam giác OMB
Trên mặt phẳng tọa độ Ory, cho parabol (P):y=r? và đường thẳng (d): y = (m + 2)x - (m+2)x-2m. a) Xác định tọa độ giao điểm (d) và (P) khi m = -3. b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là
trong mặt phẳng tọa độ Oxy cho (P) có pt y=\(\frac{1}{2}\)x\(^2\)và 2 điểm A,B thuộc (P) có hoành độ lần lượt là Xa=-1 , Xb=2.
a, Tìm tọa độ 2 điểm A,B .
b, Viết pt đt (d) đi qua 2 điểm A,B
c, Tính k/c từ điểm O (gốc tọa độ ) tới đt (d) .
Các bạn giúp mk ngay bh với
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!