Lời giải:
a. PT hoành độ giao điểm: $x^2-2(m+2)x-m^2-7=0(*)$
$(d)$ cắt $(P)$ tại 2 điểm phân biệt $\Leftrightarrow (*)$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta'=(m+2)^2+m^2+7>0$ (luôn đúng với mọi $m\in\mathbb{R}$)
Vậy (d), (P) cắt nhau tại 2 điểm phân biệt với mọi $M\in\mathbb{R}$
b.
$x_1,x_2$ chính là 2 nghiệm của $(*)$
Theo định lý Viet:
$x_1+x_2=2(m+2)$
$x_1x_2=-(m^2+7)$
Khi đó:
$x_1^2+x_2^2=x_1x_2+12$
$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+12$
$\Leftrightarrow 4(m+2)^2=-3(m^2+7)+12$
$\Leftrightarrow 7m^2+16m+25=0$
PT này vô nghiệm nên không tồn tại $m$ thỏa đk đã cho