b/
Phương trình hoành độ giao điểm của P và d là:
\(x^2=2x-m^2+9\Leftrightarrow x^2-2x+m^2-9=0\text{ (1)}\)
P cắt d tại 2 điểm nằm về 2 phía của trục tung <=> (1) có 2 nghiệm trái dấu
\(\Leftrightarrow\frac{c}{a}=m^2-9
b/
Phương trình hoành độ giao điểm của P và d là:
\(x^2=2x-m^2+9\Leftrightarrow x^2-2x+m^2-9=0\text{ (1)}\)
P cắt d tại 2 điểm nằm về 2 phía của trục tung <=> (1) có 2 nghiệm trái dấu
\(\Leftrightarrow\frac{c}{a}=m^2-9
a, Giải hệ phương trình: x + 1 y - 1 = x y - 1 x - 3 y - 3 = x y - 3
b, Trên mặt phẳng tọa độ Oxy, cho prabol (P): y = x 2 và đường thẳng d: y = 2 x + m 2 - 2 m . Tìm các giá trị của m để d cắt (P) cắt tại hai điểm phân biệt nằm về hai phía của trục tung Oy
Cho parabol (P): y = x2 và đường thẳng (d): y = mx - m + 1, m là tham số.
a)Với m = 3 hãy tìm tọa độ giao điểm của (P) và (d)
b) T ìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung.
c)Tìm m để (d) cắt (P) tại 2 điểm phân biệt cùng có hoành độ dương.
d)Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn x1 < x2 < 2
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và đường thẳng (d): y = 2x + m (m là tham số).
b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).
Cho hai hàm số : y = x^2 (p) ; y = x + 2 (d) a) vẽ đồ thị hai hàm số trên tron cùng một hệ trục toạ độ b) tìm toạ độ giao điểm của (p) và (d) c) tìm m để đường thẳng : y=2x-m cắt (p) tại hai điểm phân biệt nằm về hai phía đối với trục tung
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Cho parabol (P): y = x2 và đường thẳng (d): y = (2m+1)x - m2 - m. Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho A, B nằm ở hai phía trục tung.
Cho parabol (P): y = x 2 và đường thẳng d: y = ( m 2 + 2 ) x – m 2 . Tìm m để d cắt (P) tại hai điểm phân biệt nằm về bên phải trục tung.
A. m > 0
B. m ∈ ℝ
C. m ≠ 0
D. m < 0
Cho parabol (P) y = x2 và đường thẳng (d): y=4x - m2 + 16
1. Tìm tọa độ giao điểm của P và d khi m = 2
2. Tìm m để (d) cắt (P)cắt nhau tại hai điểm nằm về hai phía trục tung
Cho đường thẳng d: y = 2x − 5 và parabol (P): y = ( m – 1 ) x 2 (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
A. m > 1
B. - 2 3 < m < 1
C. 2 3 < m < 1
D. m < - 2 3