Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8). Phép tịnh tiến theo vecto v → biến M thành M’, thì tọa độ vecto v → là:
A. v → = ( - 13 ; 7 )
B. v → ( 24 ; - 7 )
C. v → ( 13 , 7 )
D. v → ( - 3 ; - 7 )
Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto v → biến M thành A thì bằng
A. 1 2 A D → + D C →
B. A C → + A B →
C. 1 2 C B → - A B →
D. 1 2 C B → + A B →
Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto v → biến M thành A thì v → bằng:
A. 1 2 A D → + D C →
B. A D → + A C →
C. 1 2 C B → - A B →
D. 1 2 C B → + A B →
Trong mặt phẳng Oxy cho điểm M(1;2) Phép tịnh tiến theo vecto u → = 2 ; - 6 biến điểm M thành điểm M' có tọa độ là
A. (-2;6)
B. (2;5)
C. (2;-6)
D. (4;-2)
Cho vecto v= (-2;1); d: 2x-3y+3=0 ; d1: 2x-3y-5=0
1) Viết phương trình d’= Tv(d)
2) Tìm toạ độ vecto w có phương vuông góc với d để d1= Tw(d)
Cho (d): 3x-y-9=0. Tìm phép tịnh tiến theo phương song song với trục Ox biến d thành d’ đi qua gốc toạ độ. Hãy viết phương trình d’.
Trong hệ trục toạ độ Oxy, cho parabol (P): y= \(ax^2\)Gọi T là phép tịnh tiến theo vecto u=(m;n) và (P’) là ảnh của (P) qua phép tịnh tiến đó. Hãy viết phương trình của (P’).
Cho đường thẳng \(\Delta\): 6x+2y-1=0. Tìm vecto u \(\ne\)vecto 0 để \(\Delta=\)Tu(\(\Delta\))
Cho điểm M(-4;2) và vecto v =(3;-1). Tìm điểm N biết M là ảnh của N qua phép tịnh tiến theo vecto v.
trong mặt phẳng tọa độ oxy, phép tịnh tiến theo biến đường thẳng d: 3x-y-7=0 thành đường thẳng 3x-y+13=0. hãy tìm tọa độ vecto u là vecto tịnh tiến, biết rằng cùng phương với .vecto i(1;1)
Số phát biểuđúng là:
a) Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
b) Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó là phép tịnh tiến
c) Phép tịnh tiến biến tứ giác thành tứ giác bằng nó
d) Phép tịnh tiến biến đường tròn thành chính nó
e) Phép đồng nhất biến mọi hình thành chính nó
f) Phép dời hình là 1 phép biến hình không làm thay đồi khoảng cách giữa hai điểm bất kì
g) Phép chiếu lên đường thẳng không là phép dời hình
h) Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có A’B = AB’.
i) Nếu phép dời hình F biến tam giác ABC thành tam giác A’B’C’ thì trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’.
k) Phép tịnh tiến theo vectơ là phép đồng nhất.
l) Nếu phép dời hình biến điểm A thành điểm B ( B ≠ A ) thì nó cũng biến điểm B thành A
m) Nếu phép dời hình biến điểm A thành điểm B và biến điểm B thành điểm C thì AB = BC
A.5
B.6
C.7
D.8
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v → ( 1 ; 1 ) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:
A. A’B’ = √5
B. A’B’ = √10
C. A’B’ = √11
D. A’B’ = √12
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → biến điểm A(3;-1) thành điểm A'(1;4). Tìm tọa độ của vecto v → ?
A. v → =(-4;3)
B. v → =(4;3)
C. v → =(-2;5)
D. v → =(5;-2)