Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Thanh Quỳnh

Cho p là số nguyên tố lớn hơn 3.Biết p+2 cũng là số nguyên tố.Chứng minh rằng p+1 chia hết cho 6

HND_Boy Vip Excaliber
2 tháng 1 2017 lúc 20:52

Vì p là số nguyên tố lớn hơn 3 => p không chia hết cho 3

=> p +1 chia het cho 3 (1)

Vì p là số nguyên tố lớn hơn 3 => p là số lẻ

=> p + 1 là số chẵn => p + 1 chia hết cho 2 (2)

Tu (1) va (2) => p + 1 chia het cho (3 x 2) 

                        Hay P + 1 chia hết cho 6

k mik nha,đây là cách làm đúng nhất

Lã Nguyễn Gia Hy
2 tháng 1 2017 lúc 20:56

p là số nguyên tố lớn hơn 3 => p là số lẻ => p+1 chia hết cho 2 (1).

p là số nguyên tố lớn hơn 3 => p không chia hết cho 3. Mà p+2 cũng là số nguyên tố => p+2 không chia hết cho 3.

Mà trong 3 số tự nhiên liên tiếp p, p+1, p+2 phải có 1 số chia hết cho 3 => p+1 chia hết cho 3 (2)

Từ (1) và (2) => p+1 chia hết cho 6 (do ƯCLN(2,3)=1). 

Đỗ Hữu Phước
2 tháng 1 2017 lúc 21:07

p là số nguyên tố lớn hơn 3 nên p lẻ , do đó p+1chia hết cho 2                        (1)

p là số nguyên lớn hơn 3 nên có dạng 3k + 1 hoặc 3k+ 2 (k thuộc N)

Dạng  p = 3k + 1 không xảy ra .Dạng p =3k + 2 cho ta p + 1 chia hết cho 3             (2)

từ (1) và (2) suy ra  p + 1 chia hết cho 6

tk nha bạn

Nguyễn Xuân Toàn
4 tháng 11 2017 lúc 12:51

 Câu trả lời hay nhất:  1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Nguyễn Ngô Minh Trí
4 tháng 11 2017 lúc 12:53

MÌnh làm tương tự mấy ban kia nha

thanks

k tui nha


Các câu hỏi tương tự
Nguyễn Trà My
Xem chi tiết
Phan Thảo Linh Chi
Xem chi tiết
trinh cong minh
Xem chi tiết
do thi phuong anh
Xem chi tiết
Lê Xuân Gia Hiển
Xem chi tiết
Xem chi tiết
Nguyễn Văn phong
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
Lê Trọng Quý
Xem chi tiết