Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ lẻ. Do đó $p=4k+1$ hoặc $p=4k+3$ với $k$ là số tự nhiên.
Nếu $p=4k+1$ thì $(p-1)(p+13)=4k(4k+14)=8k(2k+7)\vdots 8$
Nếu $p=4k+3$ thì $(p-1)(p+13)=(4k+2)(4k+16)=8(2k+1)(k+4)\vdots 8$
Vậy $(p-1)(p+13)\vdots 8$ với mọi $p$ là số nguyên tố lớn hơn $3$ (1)
Mặt khác:
Vì $p>3, p$ nguyên tố nên $p$ chia $p=3m+1$ hoặc $p=3m+2$ với $m$ tự nhiên.
Nếu $p=3m+1$ thì $p-1=3m\vdots 3\Rightarrow (p-1)(p+13)\vdots 3$
Nếu $p=3m+2$ thì $p+13=3m+15\vdots 3\Rightarrow (p-1)(p+13)\vdots 3$
Vậy $(p-1)(p+13)\vdots 3$ với mọi $p$ nguyên tố > 3 (2)
Từ $(1); (2)$ mà $(3,8)=1$ nên $(p-1)(p+13)\vdots 24$ (đpcm)