\(\left(a+b\right)^2=\left(a+b\right).\left(a+b\right)=a\left(a+b\right)+b\left(a+b\right)=a^2+ab+b^2+ab=a^2+2ab+b^2\)
-Do \(p\) là số nguyên tố lớn hơn 3 \(\Rightarrow p\) chỉ có dạng \(3k+1\) hoặc \(3k+2\) (k∈N*)
*Với \(p=3k+1\):
\(p^2+2021=\left(3k+1\right)^2+2021=\left(3k\right)^2+2.3k.1+1^2+2021=9k^2+6k+2022\) chia hết cho 3\(\Rightarrow\) Hợp số.
*Với \(p=3k+2\):
\(p^2+2021=\left(3k+2\right)^2+2021=\left(3k\right)^2+2.3k.2+2^2+2021=9k^2+12k+2025\)
chia hết cho 3\(\Rightarrow\) Hợp số.