GIẢI GIÚP HA MIK NHA MỌI NGƯỜI
2) CHO ĐƯỜNG TRÒN (O) VÀ ĐIỂM M NẰM NGOÀI ĐƯỜNG TRÒN. VẼ 2 TIẾP TUYẾN MA,MB VỚI(O),(A,B LÀ TIẾP ĐIỂM).VẼ ĐƯỜNG KÍNH BC CỦA (O) VÀ GỌI H LÀ HÌNH CHIẾU CỦA A TRÊN ĐƯỜNG KÍNH BC CỦA(O).CHỨNG MINH MC ĐI QUA TRUG ĐIỂM I CỦA AH.
3) CHO NỬA ĐƯỜNG TRÒN (O) ĐƯỜNG KÍNH AB=2R VÀ LẤY ĐIỂM H TRÊN CẠNH OB QU H VẼ DÂY CD VUÔNG GÓC VỚI AB. TIẾP TUYẾN C CẮT CÁC TIẾP TUYẾN TẠI A,B CỦA(O) TẠI M,N; BM CẮT` CD TẠI I. CHỨNG MINH A,N,I THẲNG HÀNG.
Cho đường tròn tâm O đường kính AB, dây cung CD vuông góc với AB tại H với H nằm giữa A và O. Trên tia đối của DC lấy điểm M. Đường thẳng MB cắt đường tròn tâm O tại F, FA cắt CD tại I
a. Chứng minh tứ giác BHÌ nội tiếp đưọc trong đường tròn
b. Chứng minh FA là phân giác của CFD
c. Tiếp tuyến của đường tròn (O) tại F cắt DM tại E. Chứng minh EI=EM
Cho đường tròn (O) đường kính AB, dây CD vuông góc với AB tại E (E nằm giữa A và O,E khác A và O). Lấy điểm M thuộc cung nhỏ BC sao cho cun MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K.
a, Chứng minh tứ giác BMFE nội tiếp
b, Chứng minh BF vuông góc với AK và EK.EF=EA.EB
c, Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK=IF
Cho (O,R) và dây CD không đi qua tâm. Lấy M thuộc tia đối của tia CD. Qua M kẻ 2 tiếp tuyến MA, MB ( với A, B là 2 tiếp điểm) với đường tròn và A thuộc cung CD lớn. Gọi I là trung điểm của CD. Nối BI cắt (O) tại E. OM cắt AB tại H
a, CM : M, A, O, I, B cùng thuộc 1 đường tròn.
b, CM: AE//CD.
c, Tìm vị trí của M để MA vuông góc với MB
Giúp =)
Bài IV (3,5 điểm):
Cho đường tròn (O; R), dây CD có trung điểm E. Trên tia đối của CD lấy điểm M. Kẻ tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng MO cắt AB tại H, cắt đường tròn tại I (I nằm giữa M và O).
a) Chứng minh: năm điểm M, A, O, E, B cùng thuộc một đường tròn.
b) Chứng minh: từ đó suy ra
c) Chứng minh: CI là phân giác của
d) Đường thẳng AB cắt OE tại K. Khi M di chuyển trên tia đối của tia CD thì AB luôn đi qua một điểm cố định.
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn tâm O đường kính AB, dây CD vuông góc với AB tại H. Trên tia đối của tia CD lấy một điểm M nằm bên ngoài đường tròn(O). Kẻ MB cắt đường tròn tại điểm E, AE cắt CD tại F. Chứng minh: MD.FC = MC. FD
Cho đường tròn tâm O đương kính AB. Điểm M là 1 điểm cố định trên tiếp tuyến tại A của (O). Vẽ tiếp tuyến MC và cát tuyến MHK(H nằm giữa M và K, tia MK nằm giữa tia M và tia MB). Các đường thẳng BH và BK cắt đường thẳng MO lần lượt tại E và F. Đường thẳng qua A sông song với MK cắt đường tròn tại I. CI cắt MK tại N.
a. CMR: tứ giác MCHE nội tiếp
b. Lấy i thuộc (O) sao cho AI//MC. cM: NH = NK
c. CMR:OE=OF