b)Tam giác OCI = ODI ( c-g-c)
vì OC =OD =R
OI chung
tam giác COE = DOE ( cạnh huyền -cạnh góc vuông)
=> OCI = ODI = 90
=> dpcm
b)Tam giác OCI = ODI ( c-g-c)
vì OC =OD =R
OI chung
tam giác COE = DOE ( cạnh huyền -cạnh góc vuông)
=> OCI = ODI = 90
=> dpcm
Cho đường tròn (O ; R), đường kính AB. M là một điểm nằm giữa O và B. Đường thẳng kẻ qua trung điểm E của AM vuông góc với AB cắt đường tròn (O) ở C và D.
a) Tứ giác ACMD là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại C, tiếp tuyến này cắt tia OA ở I. Chứng minh ID là tiếp tuyến của đường tròn (O).
Cho (O;R), AB là đkinh. M là 1 điểm nằm giữa O và B. Đthang kẻ qua trung điểm E của AM vuông góc với AB cắt (O) tại C, D
a, Tứ giác ACMD là hình gì? Vì sao?
b, Kẻ tiếp tuyến với đtron tại C, tiếp tuyến này cắt tia OA ở I. CMR ID là tiếp tuyến của (O)
Cho đường tròn (O;R) đường kính AB.M là 1 điểm nằm giữa O và B.Đường thẳng kẻ qua trung điểm E của AM vuông góc với AB cắt đường tròn (O) ở C và D
a)Tứ giác ACMD là hình gì?Vì sao?
b)Kẻ tiếp tuyến với đường tròn tại C,tiếp tuyến này cắt tia OA ở I.CMR:ID là tiếp tuyến đường tròn (O)
Đường tròn tâm O, bán kính R, đường kính AB. M là một điểm nằm giữa O và B, đường thẳng kẻ qua trung điểm E của AM vuông góc với AB cắt đường tròn O tại C và D.
a) Chứng minh ACMD là hình thoi
b) Kẻ tiếp tuyến của đường tròn O tại C, tiếp tuyến này cắt O tại E. Chứng minh rằng AD là tiếp tuyến của đường tròn O
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Từ một điểm A nằm ngoài đường tròn (O,R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a)CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
cho đường tròn (o), đường kính AB gọi H là trung điểm của OA, qua H kẻ đường thẳng vuông góc với AB cắt đường tròn (o) tại hai điểm(o) C và D. qua D kẻ tiếp tiếp tuyến với đường tròn (o) cắt tia OA tại M. chứng minh MC là tiếp tuyến của đường tròn (o)
Cho đường tròn (O; R) đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?