a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
b: H ở đâu vậy bạn?
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
b: H ở đâu vậy bạn?
Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và các tuyến MPQ ( MP < MQ ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường tròn BI và đường tròn (O)
a. Chứng minh BOIM nội tiếp
b. BOM = BEA
c. AE // PQ
Yêu cầu vẽ hình trước khi chứng minh
Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn( A,B các tiếp điểm) kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D ) a)C/M tứ giác MAOB nội tiếp b) C/M MA^2 =MC.MD c) Gọi H là giao điểm của AB và MO. CM tứ giác CHOD nội tiếp
Từ điểm M nằm ngoài đường tròn O . Vẽ tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) và cát tuyến MCD không đi qua O ( C nằm giẵ M và D ) với đường tròn O
a) C/m tứ giác MAOB nội tiếp
b)C/m MA2 =MC.MD
c) Đường thẳng MO cắt AB tại H và cắt O tại I và K ( I nằm giữa M và K ) . C/m CK là phân giác của DCH
Cho đường trong (O) và điểm M ở ngoài đường tròn. QUa M kẻ các tiếp tuyến MA,MB và cát tuyến MPQ (MP<MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đường tròn tâm (O). Chứng minh: 3 điểm O;I;K thằng hàng với K là trung điểm của EA.
Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp tuyến) a) Chứng minh tứ giác MAOB là nội tiếp trong một đường tròn b) Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA^2 = MC.MD c) Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB giúp em với ạ em đang cần gấp
Cho điểm M nằm ngoài đường tròn (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (A,B,C,D thuộc đường tròn tâm O), tia MC nằm giữa hai tia MO và MA. Gọi H là giao điểm của AB và MO.
a/ CM tứ giác MAOB nội tiếp.
b/ Gọi K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc một đường tròn. Từ đó suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt đường thẳng AB tại N. Chứng minh ND là tiếp tuyến đường tròn (O)
Từ một điểm M ở ngoài đường tròn (O;R) với OM > 2R vẽ hai tiếp tuyến MA, MB với (O) (A,B là tiếp điểm). Gọi I là trung điểm AM, BI cắt (O) tại C. Tia MC cắt (O) tại D và H là giao điểm của AB với OM.
a) Chứng minh tứ giác AOBM là tứ giác nội tiếp
b) Chứng minh AHC + AIC = 180
c) Chứng minh CA là tia phân giác của ICD.
Cho điểm M nằm ngoài đường tròn tâm O. Vẽ tiếp tuyến MA,MB với đường tròn (A,B là các tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O ( C nằm giữa M và D), OM cắt AB tại H. Chứng minh rằng
1, Tứ giác MAOB nội tiếp
2,\(\frac{MC}{MD}=\frac{AC^2}{AD^2}\)
3, HA là phân giác của góc CHD
Từ điểm M nằm bên ngoài đường tròn (O) vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA,MB đến đường tròn (O) ( AB là các tiếp điểm và C nằm giữa M, D)
a) C/m MA bình= MC.MD
b) Gọi I là trung điểm của CD. C/m 5 điểm M, A, O, I, B cùng nằm trên một đường tròn.
c) Gọi H là giao điểm của AB và MO. C/m tứ giác CHOD nội tiếp đường tròn
d) Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). C/m A,B,K thẳng hàng.