góc EMF=góc EMC=1/2*sđ cung CM
góc EFM=1/2(sđ cung BM+sđ cung CD)
=1/2(sđ cung BM+sđ cung CB)
=1/2*sđ cung CM
=>góc EFM=góc EMF
=>EF=EM
góc EMF=góc EMC=1/2*sđ cung CM
góc EFM=1/2(sđ cung BM+sđ cung CD)
=1/2(sđ cung BM+sđ cung CB)
=1/2*sđ cung CM
=>góc EFM=góc EMF
=>EF=EM
cho (O) và 2 đường kính AB và CD vuông góc với nhau. Trên cung BD lấy 1 điểm M. Tiếp tuyến của (O) tại M cắt AB ở E; CM cắt AB tại F . Chứng minh EF = EM
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S.Chứng minh ES = EM.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S.Chứng minh ES = EM.
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho đường trồn tâm O đường kính AB. Trên đường tròn tâm O lấy điểm C ( C không trùng với A,B và CA > CB) các tiếp tuyến của đường tròn O tại A và C cắt nhau ở điểm D kẻ CH vuông góc với AB ( H thuộc AB) DO cắt AC tại O
a) chứng minh tứ giác OECH nội tiếp
b) Đường thaeng CD cắt cắt AB tại F. Chứng minh 2BCF +CFB = 90°
c) BD cắt CH tại M. Chứng minh EM || AB
Cho đường tròn tâm O đường kính AB, dây cung CD vuông góc với AB tại H với H nằm giữa A và O. Trên tia đối của DC lấy điểm M. Đường thẳng MB cắt đường tròn tâm O tại F, FA cắt CD tại I
a. Chứng minh tứ giác BHÌ nội tiếp đưọc trong đường tròn
b. Chứng minh FA là phân giác của CFD
c. Tiếp tuyến của đường tròn (O) tại F cắt DM tại E. Chứng minh EI=EM
Cho (O; R) có đường kính AB. Lấy điểm C trên đường tròn sao cho AC = R.
a) Tính BC theo R và các góc của ΔABC.
b) Gọi M là trung điểm của OA. Vẽ dây CD vuông góc với AB tại M. Chứng
minh: tứ giác ACOD là hình thoi.
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng AB tại E. Chứng minh: ED
là tiếp tuyến của (O).
d) Hai đường thẳng EC và DO cắt nhau tại F. Chứng minh: C là trung điểm của EF
Cho đường tròn tâm O , đường kính AB . Trên đường tròn lấy 1 điểm C sao cho AC>BC.Các tiếp tuyến tại A và tại C của (O) cắt nhau tại D , BD cắt (O) tại E . Vẽ CH vuông góc với AB tại H, I là giao điểm của DH và AE . Tiếp tuyến tại E của (O) cắt AD tại M . Chứng minh : 3 điểm M,I,C thẳng hàng.
Cho nửa đường tròn (O) đường kính AB. Vẽ bán kính OC ⊥ AB. Lấy điểm M trên nửa đường tròn. Tiếp tuyến tại M cắt OC và cắt tiếp tuyến tại A ở hai điểm D, E. AE cắt BD tại F. Chứng minh rằng EA · EF không đổi khi M di động trên đường tròn.