Cho nửa đường tròn tâm O đường kính AB và M là điểm nằm trên (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) lần lượt ở C và D. Đường thẳng AM cắt OC tại E, đường thẳng BM cắt OD tại F
a, Chứng minh: C O D ^ = 90 0
b, Tứ giác MEOF là hình gì?
c, Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Cho đường tròn đường kính AB, d tiếp xúc (O) tại A. Dựng đường kính MN khác AB, các đường thẳng BM, BN cắt d tại E, F
a,Chứng minh AMBN là hình chữ nhật
b,Chứng minh MN tiếp xúc với đường tròn đường kính AE, AF
c, Chứng minh AE.AF ko đổi
d, Tìm vị trí MN để EF min ,diện tích MENF min , ME + NF nhỏ nhất
Cho đường tròn (O;R) đường kính AB và điểm C bất kỳ thuộc đường tròn ( C khác A và B) . Kẻ tiếp tuyến tại A của đường tròn , tiếp tuyến này cắt tia BC ở D . Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E.
1 Chứng minh BC.BD=4R22và OE//BD
2. Đường thẳng kẻ qua O và vuông góc với BC tại N cắt tia EC ở F . Chứng minh BF là tiếp tuyến của đường tròn (O;R)
Cho đường tròn tâm O, bán kính R. Từ một điểm M ở ngoài đường tròn kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB.
1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn
2) Chứng minh: MN2 = NF.NA và MN = NH
3) Chứng minh: H B 2 H F 2 − E F M F = 1 .
Cho nửa đường tròn ( O ; AB/2 ) . Từ A , B kẻ hai tiếp tuyến Ax , By ( Ax , By cùng nằm trên một nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn ( O ; AB / 2 ) . Qua một điểm M thuộc nửa đường tròn này , kẻ tiếp tuyến thứ ba với nửa đường tròn ( O ; AB/2 ) cắt tiếp tuyến Ax , By lần lượt tại C và D . Gọi E và F lần lượt là giao điểm của các đường thẳng AM và OC ; MB và OD
1. Chứng minh : CD = AC + BD
2 . Chứng minh EF // AB
3. Gọi N là giao điểm của hai đường thẳng AD và BC
Chứng minh MN vuông góc AB
Cho nửa đường tròn đường kính AB = 2R. từ A và B kẻ 2 tiếp tuyến Ax, By. qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ 3 cắt các tiếp tuyến Ax, By lần lượt ở C và D. các đường thẳng AD và BC cắt nhau tại N.
a/ chứng minh OC// BM
b/ chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
c/ chứng minh MN vông góc với AB
d/ xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Cho đường tròn tâm O đường kính AB = 2R cố định và một đường kính MN của đường tròn thay đổi ( MN khác AB ). Qua A kẻ đường thẳng d là tiếp tuyến của đường tròn, d cắt BM và BN lần lượt ở C và D.
a, Tứ giác AMBN là hình gì? Vì sao?
b, Chứng minh :BM.BC = BN. BD
c, Tìm vị trí của đường kính MN để CD có độ dài nhỏ nhất và tính gia trị nhỏ nhất đó theo R
Cho đường tròn (O) có hai đường kính AB, CD không vuông góc với nhau.
a) Chứng minh: tứ giác ACBD là hình chữ nhật.
b) Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC, BD lần lượt tại E, F. Chứng minh: tứ giác ECDF nội tiếp.
c) Từ C và D vẽ các tiếp tuyến với đường tròn (O) cắt EF theo thứ tự tại M và N. Chứng minh: MN=12EF.
d) Gọi I là chân đường vuông góc hạ từ M xuống BN; H là giao điểm của AB và MI. Chứng minh: HA = HO.
Cho đường tròn tâm O đường kính AB, điểm M thuộc đường tròn (M#A,B) Tiếp tuyến tại M cắt tiếp tuyến tại AB lần lượt tại 2 điểm C và D a, Chứng minh tứ giác ACMO nội tiếp b, Chứng minh góc CAM = góc ODM c, Gọi E là giao điểm của AM và BD, F là giao điểm của AC và BM, P là giao điểm của BA và DC. Chứng minh 3 điểm E, F, P thẳng hàng.