cho đường tròn tâm O và dây AB không đi qua O. gọi M là điểm chính giữa cug AB nhỏ . D là một điểm thay đổi trên cung AB lớn ( D khác A và B) . DM cắt AB tại C. chứng minh :
a. MB.BD= MD.BC
b. MB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD
c. tổng bán kính các đường tròn ngoại tiếp tam giác BCD và ACD không đổi
Cho đường tròn O bán kính R và hai điểm A, B nằm trên đường tròn (AB không là đường kính). Các tiếp tuyến tại A, B của đường tròn cắt nhau tại M. Kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D)
a, Chứng minh các tam giác MBC và MDB đồng dạng
b, Chứng minh tứ giác MAOB là nội tiếp
c, Khi AB = R 3 , tính bán kinh đường tròn ngoại tiếp tứ giác MAOB theo R
d, Kẻ dây AE của (O) song song với MD. Nối BE cắt MD tại I. Chứng minh I là trung điểm của CD
Cho ( O ) và dây AB cố định . Gọi M là điểm chính giữa cung lớn AB . C là điểm bất kì nằm trên dây AB . MC cắt ( O ) tại D .
a , CMR MA . MA = MC . MD
b , MB là tiếp tuyến của ( O ) nội tiếp tam giác BCD .
c , Gọi O1 , O2 là cá đường tròn ngoại tiếp tam giác BCD và ACD . CMR khi C chuyển động trên AB thì tổng các bán kính của O1 và O2 không đổi .
Cho (O) và dây AB không phải đường kính. Gọi M là điểm chính giữa cung AB và C là điểm bất kì thuộc AB. Tia CM cắt (O) tại D. Chứng minh:
a. MA2= MC.MD.
b. MB.BD= BC.MD.
c. Đường tròn ngoại tiếp tam giác BCD tiếp xúc với MB tại B.
d. Khi C di động trên AB thì các đường tròn (O1) và (O2) ngoại tiếp tam giác BCD và tam giác ACD có tổng bán kính không đổi.
Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
Chođường tròn tâm O và dây AB. Gọi M là điểm chính giữa cung AB và C là điểm bất kỳ nằm giữa A, B. Chứng minh:
a/ MC . MD = MA2
b/Tam giác MBC đồng dạng với tam giác MDB
c/ MB là tiếp tuyến của đường tròn tâm O1 ( ngoại tiếp tam giác BCD)
d/ tổng bán kính của (O1) và (O2) (ngoại tiếp tam giác ACD) không đổi
Cho đường tròn O bán kính R và hai điểm A, B nằm trên đường tròn (AB không là đường kính). Các tiếp tuyến tại A, B của đường tròn cắt nhau tại M. Kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D).
a)Chứng minh tứ giác MAOB là nội tiếp.
b) Chứng minh MB2 = MC.MD
Cho đường tròn (O) bán kính R và một dây AB cố định (AB <2R) một điểm M bất kỳ nằm trên cung lớn AB (M khác A, B). Gọi I là trung điểm của dây AB và (O’) là đường tròn qua M, tiếp xúc với AB tại A. Đường thẳng MI cắt (O), (O’) lần lượt tại các giao điểm thứ hai là N, P.
a) Chứng minh IA2 = IP. IM
b) Chứng minh tứ giác ANBP là hình bình hành.
c) Chứng minh IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP.
d) Chứng minh rằng khi M di chuyển thì trọng tâm G của tam giác PAB chạy trên một cung tròn cố định.
Cho tam giác ABC đều ngoại tiếp (O), M là một điểm bất kì trên cung nhỏ BC, AM giao BC tại D. Chứng minh rằng:
a, MA=MB+MC
b, MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ADC
c, Khi điểm M di chuyển trên cung nhỏ BC thì tổng 2 bán kính của 2 đường tròn ngoại tiếp tam giác ABD và ACD không đổi