Sửa đề: góc ADM=1/2*góc COB
Xét (O) có
MA,MB là tiếp tuyến
nên OM là phân giác của góc AOB
=>gócAOM=góc BOM
=>góc AOC=góc BOC
=>sđ cung AC=sđ cung BC
mà góc ADM=1/2*sđ cung AC
nên góc ADM=1/2*góc COB
Sửa đề: góc ADM=1/2*góc COB
Xét (O) có
MA,MB là tiếp tuyến
nên OM là phân giác của góc AOB
=>gócAOM=góc BOM
=>góc AOC=góc BOC
=>sđ cung AC=sđ cung BC
mà góc ADM=1/2*sđ cung AC
nên góc ADM=1/2*góc COB
Cho điểm M nằm ngoài đường tròn (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (A,B,C,D thuộc đường tròn tâm O), tia MC nằm giữa hai tia MO và MA. Gọi H là giao điểm của AB và MO.
a/ CM tứ giác MAOB nội tiếp.
b/ Gọi K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc một đường tròn. Từ đó suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt đường thẳng AB tại N. Chứng minh ND là tiếp tuyến đường tròn (O)
Cho điểm M nằm ngoài đường tròn (O).vẽ các tiếp tuyến MA,MB(A,B là các tiếp điểm) và cát tuyến MCD ko đi qua O (C nằm giữa M và D) với đường tròn (O). Đoạn thẳng MO cắt AB và (O) theo thứ tự tại H và I. chứng minh rằng:
a) Tứ giác MAOB nội tiếp đường tròn
b) MC.MD=MA2
c) OH.OM+MC.MD=MO2
d) CI là phân giác của góc MCH
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA và MB và cát tuyến MCD với đường tròn (O). gọi H là giao điểm của OM và AB
a) CM Tứ giác AOBM nội tiếp
b CM: MH.MO=MC.MD
c) tiếp tuyến tại C của đường tròn (O) cắt MA ,MB theo thứ tự tại E và F Đường vuông góc với MO tại O cắt 2 tiếp tuyến MA ,MB tai P và Q .CM góc POE =góc OFQ
d) CM PE+QF>= PQ
từ điểm m nằm ngoài (o) vẽ các tiếp tuyến ma,mb (a,b là tiếp tuyến) đường thẳng m cắt o tại 2 điểm phân biệt c,d ( c nằm giữa m và d) i là trung điểm cd
a, CM a,m,b,o,i thuộc 1 đường tròn
b, đường thẳng ab cắt các đường thảng om,oi lần lượt tại h, k. CMR OH.OM=OI.OK
C, CM các đườngthẳng CK, DK là các tiếp tuyến của (o)
Bài 5: Từ điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MA và cát tuyến MCD sao cho MD nằm giữa hai tia MA và MO. a)Cm: MA?= MC.MD b)Vẽ dây AB vuông góc với OM tại H. Cm: MB là tiếp tuyến của đường tròn (O) c)Cm: MH.MO = MC.MD và MHC = MDÒ
Cho điểm M nằm ngoài đường tròn O , tiếp tuyến MA, MB(A,B là các tiếp điểm) , E là giao điểm của AB và MO ,kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm C và D( C nằm giữa M và D) .Chứng tỏ EA là tia phân giác góc CED
Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)
a, Chứng minh MA. MB = ME.MF
b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp
c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MS và KC vuông góc nhau
d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng
Lấy điểm M nằm ngoài đường tròn (O;R) kẻ tiếp tuyến MA đến đường tâm O, A là tiếp điểm . Kẻ AB vuông góc MO, cắt MO tại H ( B thuộc (O))
a/CM : MB là tiếp tuyến
b/CM: MB2=MH.MO
c/Trên tia đối của tia BA lấy điểm Q. Vẽ 2 tiếp tuyến QD, QE đến đường tròn (O) (D, E là tiếp điểm ). CMR : M, D, E thẳng hàng
Mn ơi giúp mik câu c vs
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.