Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hiền nguyễn

Cho (O) , 2 đường kính AB, MN vuông góc . Trên tia AM lấy C. Kẻ MH \(\perp\) BC, MB cắt OH tại E. Gọi giao điểm của (O) và đường trong ngoại tiếp tam giác MHC là K. CMR : C, K, E thẳng hàng.

Trần Tuấn Hoàng
23 tháng 4 2023 lúc 20:26

GỢI Ý:

*Bản chất câu hỏi của bài toán là chứng minh N,E,C thẳng hàng.

*Chứng minh AMBN là hình vuông \(\Rightarrow\widehat{OMB}=\widehat{OBM}=45^0\).

*Chứng minh tứ giác OBHM nội tiếp.

\(\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{OHB}\\\widehat{OBM}=\widehat{OHM}\end{matrix}\right.\) 

Suy ra ME là phân giác của tam giác BHM.

\(\Rightarrow\dfrac{ME}{BE}=\dfrac{MH}{BH}\)

△MHB∼△CMB nên \(\dfrac{MH}{BH}=\dfrac{CM}{BM}\)

\(\Rightarrow\dfrac{ME}{BE}=\dfrac{CM}{BM}=\dfrac{CM}{BN}\)

\(\Rightarrow\)△CME∼△NBE (c-g-c).

\(\Rightarrow\widehat{CEM}=\widehat{NEB}\) nên C,E,N thẳng hàng.

*NC cắt (O) tại D. \(\Rightarrow\widehat{MDN}=90^0=\widehat{MDC}\)

\(\Rightarrow\)Tứ giác MDHC nội tiếp

\(\Rightarrow\)D thuộc đường tròn ngoại tiếp tam giác MHC nên D trùng K.

\(\Rightarrowđpcm\)

 


Các câu hỏi tương tự
duong
Xem chi tiết
Nguyễn thị thảo
Xem chi tiết
thy mai
Xem chi tiết
Đỗ Quang Hiếu
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Mr Potato Nguyễn
Xem chi tiết
Khánh Huy
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Tâm Nhu Thái
Xem chi tiết