Cho nửa (O; R) đường kính AB. Lấy C là điểm di động trên nửa đường tròn (O). E là hình chiếu của C trên AB, H và K lần lượt là điểm đối xứng với E qua AC và BC, EH cắt AC tại P; EK cắt BC tại Q.
a.Chứng minh tứ giác EPCQ là hình chữ nhật
b.Chứng minh CP.CA = CQ.CB
c.Chứng minh HK là tiếp tuyến của (O)
Cho nửa (O; R) đường kính AB. C là điểm di động trên nửa đường tròn. E à hình chiếu của C trên AB, H và K lần lượt là điểm đối xứng với E qua AC và BC, EH cắt AC tại P; EK cắt BC tại Q.
vẽ cho mình hình với
Cho nửa (O; R) đường kính AB. C là điểm di động trên nửa đường tròn. E à hình chiếu của C trên AB, H và K lần lượt là điểm đối xứng với E qua AC và BC, EH cắt AC tại P; EK cắt BC tại Q.
vẽ cho mình hình với
Cho nửa đường tròn (O;R) đường kính BC và một điểm A trên nửa đường tròn (A khác B,C). Hạ AH vuông góc BC tại H. Trên nửa mp bờ BC chứa A dựng 2 nửa đường tròn đường kính HB, HC chúng lần lượt cắt AB, AC tại E và F.
1) C/m AE.AB=AF.AC
2) C/m EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC.
3) gọi I,K lần lượt là điểm đối xứng của H qua AB, AC. Cm 3 điểm A,I,K thẳng hàng
4) đường thẳng IK cắt tiếp tuyến kẻ từ B của nửa đường tròn (O) tại M. Cm 3 đường thẳng MC, AH,EF đồng quy
Cho điểm C nằm trên nửa đường tròn (O,R), đường kính AB sao cho cung AC lớn hơn cung BC ( C khác B ). Đường thẳng vuông góc với đường kính AB tại O cắt dây AC tại D
a) Chứng minh tứ giác BCDO nội tiếp
b) Chứng minh AD.AC=AO.AB
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng đi qua D và song song với AB tại điểm E. Tứ giác OEDA là hình gì?
d) Gọi H là hình chiếu của C trên AB. Hãy tìm vị trí điểm C để HD\(\perp\)AC
Bài 4: Cho nửa đường tròn (O; R) đường kính AB. Điểm C di động trên nửa đường tròn (C khác A, B), gọi M là điểm chính giữa cung AC, BM cắt AC tại H và cắt tia tiếp tuyến Ax của nửa đường tròn (O) tại K, AM cắt BC tại D. a) Chứng minh tứ giác DMHC nội tiếp và HM. HB = HA.HC b) Chứng minh ABD cân đỉnh B c) Chứng minh KD là tiếp tuyến của (B; BA). d) Tứ giác AKDH là hình gì? Vì sao? e) Đường tròn ngoại tiếp BHD cắt đường tròn (B; BA) tại N. Chứng minh A, C, N thẳng hàng.
cho nửa đường tròn tâm O bán kính r đường kính BC. A nằm trên đường tròn, kẻ AH vuông góc với BC gọi I và K lần lượt là điểm đối xứng của H qua AB và AC. đường thẳng IK và tia CA cắt tiếp tuyến kẻ từ B của đường tròn lần lượt tại M và N .gọi e là giao của IH và AB gọi F là giao KH và AC a) chứng minh I,A,K thẳng hàng và IK là tiếp tuyến của (O) b)chưngs minh: 1/BH bình= 1/AB bình +1/AN bình
cho nữa đường tròn (O ; R), đường kính AB. Vẽ các tiếp tuyến Ax, By với nữa đường tròn này. Gọ E là điểm di động trên cung AB (E không trùng với A và B). Tiếp tuyến tại E của nữa đường tròn cắt Ax và By lần lượt tại C và D. Tia AE cắt By tại N; tia BE cắt Ax tại M.
a) Chứng minh rằng \(^{OE^2}\)= CE.ED
b) Chứng minh rằng \(\Delta ABM\approx\Delta BAN\)và tích AM.BN không thay đổi.
c) Gọi K là giao điểm của AD và BC. Tia EK cắt AB tại H
Chứng minh EH//AC và K là trung điểm của EH
d) Hãy xác định vị trí của điểm E trên cung AB để tổng diện tích tam giác ACE và BDE đạt giá trị nhỏ nhất