Cho nửa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý nửa đường tròn ( M khác A;B ) . Kẻ hai tia tuyến Ax và By với đường tròn .Qua M kẻ tia tuyến thứ ba lần lượt cắt Ax và B tại C và D .
a, Chứng minh : CD =AC +BD và góc COD =90 độ.
b, Chứng minh : AC BD=R^2
C,OC cắt AM tại E ,OD cắt BM tại F . Chứng minh : EF=R
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
cho nửa đường tròn tâm O có đường kínhAB bằng 2r kẻ hai tiếp tuyến Ax By của nửa O tại A và B Ax By và nửa đường tròn O thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB qua điểm M thuộc nửa đường tròn M khác A B kẻ tiếp tuyến với nửa đường tròn cắt tia Ax By theo thứ tự tại C D
a chứng minh AC + BD = CD và tam giác BCD vuông tại O
b Tính tích AC nhân BD theo AB
c các đường thẳng AB và BC cắt nhau tại N Chứng minh MN vuông góc với AB
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
:Cho nửa đường tròn tâm O đường kính AB = 2R. D là 1 điểm tuỳ ý trên nửa đường tròn (D khác A và D khác B). Các tiếp tuyến với nửa đường tròn (O) tại A và D cắt nhau ở C, BC cắt nửa đường tròn (O) tại điểm thứ hai là E. Kẻ DF vuông góc với AB tại F.
a) Chứng minh: Tứ giác OACD nội tiếp.
b) Chứng minh: CD^2 = CE.CB
c) Chứng minh: Đường thẳng BC đi qua trung điểm của DF.
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax. By của nửa đường tròn (O) tại A, B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt tia Ax và By theo thứ tự tại C và D.
A) chứng minh AC. BD=R2
B) kẻ MH vuông góc AB(H thuộc AB) chứng minh :OC song song với BM.
C) chứng minh rằng BC đi qua trung điểm đoạn MH
cho nửa đường tròn tâm O đường kính AB bằng 2r gọi C và D là hai điểm trên nửa đường tròn sao cho C thuộc cung AD và góc COD bằng 120 độ AD cắt BC tại E AC cắt BD tại F .chứng minh rằng:
a/ 4 điểm CDEF cùng thuộc một đường tròn
b/ tính r đường tròn đi qua CDEF qua r
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
a) Chứng minh tứ giác CFDH nội tiếp
b) Chứng minh CF.CA = CH.CB