Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Thu Hiền

Cho nửa đường tròn tâm O đường kính AB. Lấy điểm H cố định trên đoạn OA, đường vuông góc với OA tại H cắt nửa đường tròn tại C. Gọi N là trung điểm của BC. M là điểm bất kì thuộc cung nhỏ BC (M ≠ B; M ≠ C). Tia BM cắt HC tại K; AM cắt HC tại E. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác AEK di chuyển trên một đường thẳng cố định khi M di chuyển trên cung nhỏ BC. 

An Thy
11 tháng 7 2021 lúc 15:50

AB cắt đường tròn ngoại tiếp tam giác AEK tại D

Vì AB là đường kính \(\Rightarrow\angle AMB=90\Rightarrow\angle EMB+\angle EHB=90+90=180\)

\(\Rightarrow EMBH\) nội tiếp \(\Rightarrow\angle KBD=\angle MBH=\angle AEH\)

Vì KEAD nội tiếp \(\Rightarrow\angle AEH=\angle KDB\Rightarrow\angle KBD=\angle KDB\)

\(\Rightarrow\Delta KDB\) cân tại K có KH là đường cao 

\(\Rightarrow H\) là trung điểm BD mà B,H cố định \(\Rightarrow D\) cố định

Vì KEAD nội tiếp \(\Rightarrow I\in\) trung trực AD mà A,D cố định

\(\Rightarrow\) đpcmundefined


Các câu hỏi tương tự
Hòa Vũ
Xem chi tiết
Phan Thị Huyền Linh
Xem chi tiết
Nguyễn Quốc Trung
Xem chi tiết
chikaino channel
Xem chi tiết
Lâm Đàm
Xem chi tiết
Heri Mỹ Anh
Xem chi tiết
phanvan duc
Xem chi tiết
Dương Phạm
Xem chi tiết
Trần Minh Tuấn
Xem chi tiết