Cho nửa đường tròn tâm O đường kính AB điểm M bất kì nằm trên nửa
đường tròn. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax.
Tia BM cắt Ax tại I, tia phân giác của MAI cắt nửa đường tròn tại E, cắt tia MN
tại F tia BE cắt Ax tại H, cắt AM tại K.
a. Chứng minh rằng: Tứ giác EFMK là tứ giác nội tiếp
b. Chứng minh tam giác BAF là tam giác cân
c. AKFH là hình thoi
d. Xác định M để AKFI nội tiếp nửa đường tròn
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi