cho nửa đường tròn tâm O bán kính R,đường kính AB từ A và B vẽ 2 tiếp tuyến Ax và By,1 điểm M di động trên nửa đường tròn này vẽ tiếp tuyến tại M cắt Ax và By lần lượt tại C và D.
a)tính góc COD
b)xác định vị trí của M trên nửa đường tròn O sao cho AB+BD nhỏ nhất
giúp mình với
Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.
a) Chứng minh AOME và BOMN là các tứ giác nội tiếp. b) Chứng minh AE. BN = R2 . c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN ⊥ . d) Giả sử MAB R=α và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α . e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O) .
Cho đường tròn (O) đường kính AB, Ax và By là hai tiếp tuyến của (O) tại các tiếp điểm A, B. Lấy điểm M bất kì trên nửa đường tròn (M thuộc cùng một nửa mặt phẳng bờ AB chứa Ax, By), tiếp tuyến tại M của (O) cắt Ax, By lần lượt tại C và D.
1. Chứng minh: Tứ giác AOMC nội tiếp.
2. Giả sử BD = R√3. Tính AM.
3. Nối OC cắt AM tại E, OD cắt BM tại F, kẻ MN ⊥ AB (N ∈ AB), chứng minh đường tròn ngoại tiếp ΔNEF luôn đi qua 1 điểm cố định.
4. Tìm vị trí điểm M trên nửa đường tròn để bán kính đường tròn ngoại tiếp tứ giác CEFD có độ dài nhỏ nhất
Cho nửa đường tròn (O;R) đường kính AB. M là điể di đọng trên nửa đường tròn .Qua M vẽ tiếp tuyến với nửa đường tròn .Gọi D lần lượt là hình chiếu vuông góc của A,B lên tiếp tuyến ấy .
a/CMR : AD+BC không đổi
b/ Xác định vị trí điểm M để diện tích tứ giác ABCD lớn nhất
GIÚP MÌNH VỚI !!!
Cho nửa đường tròn (O; R) đường kính AB và một điểm E di động trên nửa đường tròn đó (E không trùng với A và B). Vẽ các tia tiếp tuyến Ax, By với nửa đường tròn. Tia AE cắt By tại C, tia BE cắt Ax tại D.a) Chứng minh rằng tích AD.BC không đổi. b) Tiếp tuyến tại E của nửa đường tròn cắt Ax, By theo thứ tự tại M và N. Chứng minh rằng ba đường thẳng MN, AB, CD đồng quy hoặc song song với nhau.c) Xác định vị trí của điểm E trên nửa đường tròn để diện tích tứ giác ABCD nhỏ nhất. Tính diện tích nhỏ nhất đó.
Cho nửa đường tròn đường kính AB = 2R. từ A và B kẻ 2 tiếp tuyến Ax, By. qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ 3 cắt các tiếp tuyến Ax, By lần lượt ở C và D. các đường thẳng AD và BC cắt nhau tại N.
a/ chứng minh OC// BM
b/ chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
c/ chứng minh MN vông góc với AB
d/ xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Cho nửa đường tròn tâm O có đường kính AB. Gọi Ax, By là các tia vuông góc với AB. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D.
a) xác định vị trí của M để diện tích ACDB nhỏ nhất
b) Từ M kẻ đường thẳng vuông góc với AB tại H. Chứng minh rằng CB đi qua trung điểm I của MH.
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
b) AC cắt DO tại M, BC cắt OE tại N. Tứ giác CMON là hình gì? Vì sao?
Cho nửa đường tròn tâm O đường kính AB, kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với đường thẳng AB. Lấy E là một điểm thuộc nửa đường tròn ( E khác A, khác B). Tiếp tuyến của nửa đường tròn tại E cắt Ax, By lần lượt tại C, D. Gọi I là giao điểm của OC và AE. K là giao điểm của OD và BE. Xác định vị trí của E trên nửa đường tròn sao cho diện tích tứ giác EIOK lớn nhất.