cho nửa đường tròn (o) đườn kính AB và bán kính OC vuông góc AB. Lấy điểm M thuộc cung AC. tiếp tuyến tại M cắt OC tại N. CMR góc MNO= góc 2MBA
Cho đường tròn O bán kính R, đường kính AB, OC vuông góc vs AB M thuộc nửa đường tròn O , M khác A,B. Tiếp tuyến của nửa đường tròn O tại M cắt OC và tiếp tuyến tại A của nửa đường tròn lần lượt tại D,E, AE cắt BD tại F. Chứng minh EA.EF=R^2
Cho nửa đường tròn (O) đường kính AB. Vẽ bán kính OC ⊥ AB. Lấy điểm M trên nửa đường tròn. Tiếp tuyến tại M cắt OC và cắt tiếp tuyến tại A ở hai điểm D, E. AE cắt BD tại F. Chứng minh rằng EA · EF không đổi khi M di động trên đường tròn.
Cho nửa đường tròn tâm O đường kính AB .Gọi y là điểm chính giữa cung AB. Lấy điểm M thuộc cung Ay tiếp tuyến tại M cắt đường thẳng Oy tại D.Chứng minh góc MDO=2.MBA
Cho nửa đường tròn (O) đường kính AB = 2R. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. M là điểm trên (O) sao cho tiếp tuyên tại M cắt Ax, By tại D và C. Đường thẳng AD cắt BC tại N
a, Chứng minh A, C, M, O cùng thuộc một đường tròn. Chỉ ra bán kính của đường tròn đó
b, Chứng minh OC và BM song song
c, Tìm vị trí điểm M sao cho SACDB nhỏ nhất
d, Chứng minh MN và AB vuông góc nhau
BÀI 1 Cho đường tròn ( O) đường kính AB , vẽ bán kính OC vuông góc với AB. Từ B vẽ tiếp tuyến Bx. Gọi M là trung điểm OC , AM kéo dài cắt đường tròn tại E và Bx tại I .Tiếp tuyến từ E cắt Bx tại D. Chứng minh tứ giác MODE nội tiếp
BÀI 2: Cho đường tròn (O) đường kính AB, từ A và B vẽ Ax vuông góc với AB và By vuông góc BA ( Ax và By cùng phía so với bờ AB) .Vẽ tiếp tuyến x'My' ( tiếp điểm M ) cắt Ax tại C và By tại D; OC cắt AM tại I và OD cắt BM tại K .Chứng minh tứ giác CIKD nội tiếp
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O) và hai đường kính AB,CD vuông góc với nhau.Lấy một điểm M trên cung AC rồi vẽ tiếp tuyến với đường tròn (O) tại M.Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng ∠ MSD = 2.MBA
cho đường tròn tâm o đường kính AB; bán kính OC vuông góc AB lấy F thuộc OB. kẻ CF cắt đường tròn tâm O tại D . vẽ tiếp tuyến tại D của đường tròn tâm O cắt AB tại E. chứng minh DE=EF