Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ các tiếp tuyến Ax, By với (O) (Ax, By nằm cùng phía đối với nửa đường tròn (O)). Gọi M là 1 điểm trên đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax, By thứ tự ở C và D. Chứng minh rằng: 1) Chứng minh Góc COD bằng 90° 2) Chứng minh 4 điểm B, D, M, O thuộc 1 đường tròn 3) Chứng minh CD = AC + BD 4) Chứng minh Tích AC.BD không đổi khi M chuyển động trên nửa đường tròn (O) 5) Chứng minh AB là tiếp tuyến đường tròn đường kính CD 6) Gọi N là giao điểm của AD và BC. Chứng minh: MN // AC
2: Xét tứ giác BDMO có
\(\widehat{DBO}+\widehat{DMO}=180^0\)
Do đó: BDMO là tứ giác nội tiếp