\(n^2>!n!.n\Rightarrow n< 0\)
\(\Leftrightarrow\frac{x^3-3x-2}{x^2+4x+3}=\frac{\left(x+1\right)\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+3\right)}< 0\)
ĐK \(\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)\(N=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)}< 0\)
=>\(\orbr{\begin{cases}-2< x< -1\\x< -3\end{cases}}\)
nhầm
(x+1)^2(x-2)/(x-1)(x+3)<0<=>(x-2)/(x-1)(x+3)<0<=>x<-3 hoặc 1<x<2
(