cho n thuộc N* .Chứng minh rằng các số sau là hợp số
a,A=(2^2^2n +1)+3 b,B=(2^2^4n+1)+7 c,C=(2^2^6n+2)+13
Với n thuộc N* CMR các số sau là hợp số
(2 mũ 2 mũ 4n+1)+7
(2 mũ 2 mũ 6n+2) +13
cho n thuộc N . CMR các cặp số sau là nguyên tố cùng nhau :
30n+17 và 12n+72n+1 và 2n+318n+2 và 30n+324n+7 và 18n+52n+5 và 3n+7Cho n thuộc N* ,chứng minh rằng các số sau là hợp số:
a) A = 2^2^2n+1 + 3
b) B = 2^2^4n+1 + 7
c) C = 2^2^6n+2 + 13
Cho n ∈ N * ,chứng minh rằng các số sau là hợp số:
a) A = 2 2 2 n + 1 + 3 ;
b) B = 2 2 4 n + 1 + 7 ;
c) C = 2 2 6 n + 2 + 13 .
1)a)tìm n thuộc N*để 3n+1chia hết cho5n-2
b)tìm các chữ số a,,b,c để 7268abc chia hết cho 7,12,8,9
2)cho a và blaf 2 số nguyên tố cùng nhau sao cho a,b khác tính chẵn lẻ cmr a+b và a(a+2)+ab là 2 số nguyên tố cùng nhau
3)cmr với mọi n thuộc N* thì
1.2.3+2.3.5+3.4.7+..+n(n+1)(2n+1)=n(n+1)^2(n+2)/2
4)cho 17 số tự nhiên khác 0:a1,a2,a3,....,a17mà a1+a2+a3+...+a17=153153
cmr a1^5+a2^9+a3^13+...+a17^69 không phải số chính phương
câu 1: tìm BCNN của 3số tự nhiên liên tiếp
câu 2 : tìm x, y thuộc N sao cho . 20x0y04 chia hết cho 13
câu 3: CMR: P và 2P + 1 là số nguyên tố < 3 và 4P + 1 là hợp số
câu 4: CMR p + 6 ; p + 12 ; p + 18 là số nguyên tố
câu 5: a = 1 + 2 + 3 + ... + n và b = 2n + 1 CMR (a,b) = 1
a,Chứng minh A=13^n+2+14^2n+1 chia hết cho 183
b,Chứng minh P=2^2n+2+24n+14 chia hết cho 18
c,Cho A=(n+1)x(n+2)x...........x(n+n)
Chứng minh A chia hết cho 2^n với nEN*