Xét thường hợp n là số chẳn:
Đặt \(n=2k\left(k\inℕ^∗\right)\)
Khi đó \(\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)\)
\(=\left(2k+3\right)\left(2+3\right).2⋮2\)
Do đó \(\left(n+3\right)\left(n+6\right)⋮2\)
Xét trường hợp n là số lẻ:
Đặt \(n=2k+1\left(k\inℕ^∗\right)\)
khi đó: \(\left(n+3\right)\left(n+6\right)=\left(2k+1+3\right)+\left(2k+1+6\right)\)
\(=\left(2k+4\right)+\left(2k+7\right)=\left(2k+2.2\right)\left(2+3\right)\)
\(=2\left(k+2\right)\left(2+3\right)⋮2\)
\(\Rightarrowđpcm\)
bạn ơi,cảm ơn nha nhưng tại sao (2k+3)(2k+6)=(2k+3)(2+3).2 vậy???