Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minz Ank

Cho n là số tự nhiên.Chứng minh rằng:

b) n(n+1)( n+2) chia hết cho 2 và cho 3;

c) n ( n+1) ( 2n+1) chia hết cho 2 và cho 3.

Nobi Nobita
21 tháng 10 2020 lúc 20:21

b) Vì \(n\)\(n+1\)là 2 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)

Vì \(n\)\(n+1\)\(n+2\)là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\)chia hết cho cả 2 và 3 ( đpcm )

c) Vì \(n\)\(n+1\)là 2 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)(1)

Ta có: \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(2n+4-3\right)\)

\(=n\left(n+1\right)\left(2n+4\right)-3n\left(n+1\right)\)

\(=2.n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)\)

Từ phần b \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)

\(\Rightarrow2n\left(n+1\right)\left(n+2\right)⋮3\)

mà \(3n\left(n+1\right)⋮3\)\(\Rightarrow2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)⋮3\)

hay \(n\left(n+1\right)\left(2n+1\right)⋮3\)(2)

Từ (1) và (2) \(\Rightarrow n\left(n+1\right)\left(2n+1\right)\)chia hết cho cả 2 và 3 ( đpcm )

Khách vãng lai đã xóa
Nguyễn Minh Đăng
20 tháng 10 2020 lúc 21:54

b) Trong 2 số tự nhiên liên tiếp tồn tại 1 số chia hết cho 2

=> n(n+1)(n+2) chia hết cho 2 (1)

Trong 3 số tự nhiên liên tiếp tồn tại một số chia hết cho 3

=> n(n+1)(n+2) chia hết cho 3 (2)

Từ (1) và (2) => đpcm

c) Ta có: \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]\)

\(=\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Áp dụng phần a tích 3 STN liên tiếp chia hết cho 2 và 3

=> (n-1)n(n+1) và n(n+1)(n+2) cùng chia hết cho ả 2 và 3

=> n(n+1)(2n+1) chia hết cho cả 2 và 3

=> đpcm

Khách vãng lai đã xóa
Sultanate of Mawadi
21 tháng 10 2020 lúc 21:52

hello

cần lm j z?

Khách vãng lai đã xóa

Các câu hỏi tương tự
Minz Ank
Xem chi tiết
kudosinichi
Xem chi tiết
Nguyễn Vũ Anh
Xem chi tiết
Nguyễn Văn Dũng
Xem chi tiết
Nguyễn Ngọc Huyền
Xem chi tiết
Cao Thị Thùy Dung
Xem chi tiết
Hinata
Xem chi tiết
Hiền Đỗ
Xem chi tiết
Bao Tran Gia
Xem chi tiết