Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}\)
\(3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{n}{3^{n-1}}\)
\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}-\dfrac{n}{3^n}< 1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Tương tự ta được \(2B=3-\dfrac{1}{3^{n-1}}< 3\)
\(\Rightarrow B< \dfrac{3}{2}\Rightarrow2A< \dfrac{3}{2}\Rightarrow A< \dfrac{3}{4}\)(đpcm)