Cho n là số nguyên dương. C/m:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}< \dfrac{3}{4}\)
tìm nghiệm của phân thức viết dưới dạng phân số
a.\(\dfrac{4}{\left(2+\dfrac{2}{1+\dfrac{4}{5}}\right)x-\left(1-\dfrac{4}{2+\dfrac{1}{1+\dfrac{7}{8}}}\right)}+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}\)
= \(4+\dfrac{2}{1+\dfrac{8}{9}}\)
b.
\(\dfrac{1}{2+\dfrac{3}{4+\dfrac{5}{6+\dfrac{7}{8}}}}=\dfrac{1}{3+\dfrac{2}{5+\dfrac{3}{7+\dfrac{4}{9}}}}+x.\left(4+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{2}}}\right)\)
(giải bằng máy tính casio )
tìm x,y viết dưới dạng phân số
a. \(5+\dfrac{x}{5+\dfrac{2}{5+\dfrac{3}{5+\dfrac{4}{5}}}}=\dfrac{x}{1+\dfrac{5}{2+\dfrac{4}{3+\dfrac{3}{5+\dfrac{1}{6}}}}}\)
b.
\(\dfrac{y}{3+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{3}}}}}}+\dfrac{y}{7+\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{4}}}}\)
= 2
c,
\(x.\left(\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1}}}}}}}}\right)=\)\(2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2}}}}}}}\)+\(x.\left(3+\dfrac{1}{3-\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{3-\dfrac{1}{3}}}}}\right)\)
Giair bằng máy tính casio
CMR
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+....\dfrac{2n-1}{4+\left(2n-1\right)^4}=\dfrac{n^2}{4n^2+1}\)
với mọi n nguyên dương
1. Tìm số tự nhiên n sao cho :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{n.\left(n+1\right)}=\dfrac{2999}{3000}\)
2. Tính :
a ) \(S=2018.3+2018.4+2018.5+...+2018.2018\)
b ) \(\dfrac{1}{\sqrt{8}+\sqrt{10}}+\dfrac{1}{\sqrt{10}+\sqrt{12}}+\dfrac{1}{\sqrt{12}+\sqrt{14}}+...+\dfrac{1}{\sqrt{200}+\sqrt{202}}\)
c ) \(S=5.21^2+5.21^3+5.21^4+....+5.21^{2018}\)
d ) \(A=9+99+999+9999+...+9..9\)( 99 chữ số 9)
e ) 72+772+7772+...+77...72( 77 chữ số 7 )
2. Tính tổng :
a ) \(S=\dfrac{1}{3\sqrt{1}+3\sqrt{3}}+\dfrac{1}{3\sqrt{3}+3\sqrt{5}}+...+\dfrac{1}{3\sqrt{2017}+3\sqrt{2019}}\)
b ) S = \(\dfrac{1}{\sqrt{2.2}+\sqrt{2.3}}+\dfrac{1}{\sqrt{2.3}+\sqrt{2.4}}+\dfrac{1}{\sqrt{2.4}+\sqrt{2.5}}+...+\dfrac{1}{\sqrt{2.2018}+\sqrt{2.2019}}\)
Tính:
a, \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{n^2\left(n+1\right)^1}\) tại n= 2014
b, \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{12}{13!}\)
Bài 1: A = \(\dfrac{x-3}{x+1}\) ; B = \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
Tìm các số nguyên x sao cho biểu thức Q = A.B có giá trị là 1 số nguyên
Bài 2: Cho biểu thức : P = \(\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\)
Tìm các giá trị nguyên của x để P có giá trị nguyên dương
1. Rút gọn biểu thức:
\(Q=\dfrac{1}{1^4+1^2+1}+\dfrac{2}{2^4+2^2+1}+...+\dfrac{n}{n^4+n^2+1}\) với \(n\in N\)*
2. Giải phương trình:
\(\dfrac{4x^2+14}{x^2+6}-\dfrac{5}{x^2+1}=\dfrac{7}{x^2+3}+\dfrac{9}{x^2+5}\)
Chứng minh rằng với mọi số tự nhiên \(n\ge3:\)
\(B=\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\)