Cho M=x^2+y^2, với x;y là các số thực thỏa mãn 0<y<x<4 và x+y =<7. Tìm GTLN của M
B1. Cho x,y thỏa mãn:\(x^{2018}+y^{2018}=2\)Tìm GTLN của biểu thức: \(Q=x^2+y^2\)
B2. Cho x,y là các số thực thoă mãn \(x^4+y^4=1\)Tìm GTLN của: \(F=2019x+2y^5\)
B3. Cho x,y thỏa mãn: \(Q=36x^2+16y^2-9=0\)
Tìm GTNN và GTLN của: \(U=y-2x+5\)
cho x,y là hai số thực dương thỏa mãn đẳng thức x+y=2.Tìm GTLN của biểu thức M=x^2y^2(x^2+y^2)
Cho x, y là các số thực không âm thỏa mãn:
x^2-2xy+x-2y nhỏ hơn hoặc bằng 0.
Tìm GTLN của M=x^2-5y^2+3x
cho số thực x, y thỏa mãn x3+y3+3(x2+y2)+4(x+y)+4=0 và xy>0. tìm GTLN của
\(M=\frac{1}{x}+\frac{1}{y}\)
Cho x,y,z là các số thực dương thỏa mãn: x^2+y^2+z^2=2.Tìm GTNN và GTLN của P=\(\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)
cho hai số thực x,y thỏa mãn điều kiện 0<x<=1; 0<y<=1 và x+y=4xy. Tìm GTLN, GTNN của biểu thức P=x^2+y^2-xy
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)