a: Xét ΔAMO vuông tại O và ΔBNO vuông tại O có
OA=OB
AM=BN
Do đó: ΔAMO=ΔBNO
b: MN là trung trực của AB
=>MA=MB; NA=NB
mà MA=NB
nen MA=AN
=>ΔAMN cân tại A
c: góc AMB=2*30=60 độ
=>ΔMAB đều
a: Xét ΔAMO vuông tại O và ΔBNO vuông tại O có
OA=OB
AM=BN
Do đó: ΔAMO=ΔBNO
b: MN là trung trực của AB
=>MA=MB; NA=NB
mà MA=NB
nen MA=AN
=>ΔAMN cân tại A
c: góc AMB=2*30=60 độ
=>ΔMAB đều
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
Trên ba cạnh AB, BC và CA của tam giác đều ABC lấy các điểm theo thứ tự M, N, P sao cho AM = BN = CP. Gọi O là giao điểm ba đường trung trực của tam giác ABC.
a) Tính số đo góc M A O ^ .
b) Chứng minh ∆ M A O = ∆ O P C .
c) Chứng minh O là giao điểm ba đường trung trực của tam giác MNP.
Cho tam giác ABC cân (AB=AC), góc A>90 . Vẽ đường trung trực của các cạnh AB,AC cắt các cạnh này tại M và N và cắt BC lần lượt tại P và Q .a)các tam giác APB và tam giác AQC là tam giác gì.b) gọi O là giao điểm của MP và QN . Chứng minh tam giác AMO=tam giác ANO c) chứng minh O là trực tâm của hai tam giác APB và AQC
Cho tam giác ABC đều.
M, N, P lần lượt là các điểm nằm trên AB, BC, CA sao cho AM=BN=CP
a) Chứng minh tam giác MNP đều
b) O là giao điểm các đường trung trực của tam giác ABC. Chứng minh O cũng là giao điểm các đường trung trực của tam giác MNP.
Trên ba cạnh AB; AC: BC của tam giác đều ABC . Lấy các điểm theo thứ tự M; N; P sao cho AM = BN = CP. Gọi O là giao điểm 3 đường trung trực của \(\Delta ABC\). C/minh O cũng là giao điểm ba đường trung trực của \(\Delta MNP\).
Cho tam giác ABC cân (AB = AC). O là giao điểm của 3 đường trung trực của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA lấy 2 điểm M, N sao cho AM = CN. Chứng minh:
a, Góc OAB = góc OCA
b, Tam giác OAM = Tam giác CON
c, Hai đường trung trực OM; ON cắt nhau tại I. Chứng minh: OI là phân giác của góc MON
Cho tam giác đều ABC trên các cạnh AB, BC, CA theo thứ tự lấy 3 điểm M, N, P sao cho AM=BN=CP.
a) Chứng minh tam giác MNP là tam giác đều.
b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng OM=ON=OP từ đó suy ra O là giao điểm các đường trung trực của tam giác MNP
Trên ba cạnh AB,AC và CA của tam giác đều ABC lấy các điểm theo thứ tự M,N,P sao cho AM=CN=CP.Gọi O là giao điểm ba đường trung trực của tam giác ABC
a) Tính số đo góc MAO
b)Chứng minh tam giác MAO = tam giác OPC
c)Chứng minh O là giao điểm ba đường trung trực của tam giác ABC
(Nếu được thì cho mình xin hình luôn nhé)
Cho tam giác ABC trên AB và AC lấy hai điểm M và N sao cho AM=AN goi O là giao điểm của CM và BN biết rằng góc AMO =141 độ và góc BOC= 120 dộ tính góc BAC