Đáp án D
Ta có:
R = d 2 + M N 2 2 = 25 + 12 2 = 13 ⇒ S = 4 π R 2 = 676 π .
Đáp án D
Ta có:
R = d 2 + M N 2 2 = 25 + 12 2 = 13 ⇒ S = 4 π R 2 = 676 π .
Cho mặt cầu (S) có tâm I và bán kính R = 5. Đường thẳng D cắt mặt cầu tại hai điểm A, B thỏa mãn AB = 4. Tính khoảng cách d từ tâm I đến đường thẳng D
A. d = 21
B. d = 1
C. d = 3
D. d = 17
Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho A B = 3 , A C = 4 , B C = 5 và khoảng cách từ O đến mặt phẳng (ABC) bằng 1. Thể tích của khối cầu (S) bằng
A. 7 21 π 2
B. 13 13 π 6
C. 20 5 π 3
D. 29 29 π 6
Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho AB = AC = 6, BC = 8. Khoảng cách từ O đến mặt phẳng (ABC) bằng 2. Thể tích khối cầu (S) bằng
A. 404 π 5
B. 2916 π 5 75 .
C. 404 π 505 75
D. 324 π 5
Cho mặt cầu S(O;R) và (P) cách O một khoảng bằng h (0<h<R). Gọi (L) là đường tròn giao tuyến của mặt cầu (S) và (P) có bán kính r. Lấy A là một điểm cố định thuộc (L). Một góc vuông xAy trong (P) quay quanh điểm A. Các cạnh Ax, Ay cắt (L) ở C và D. Đường thẳng đi qua A và vuông góc với (P) cắt mặt cầu ở B. Diện tích ΔBCD lớn nhất bằng
A. 2 r r 2 + 4 h 2
B. r r 2 + 4 h 2
C. r r 2 + h 2
D. 2 r r 2 + h 2
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng P : x − y + z = 0 và mặt cầu (S) có tâm I 1 ; − 1 ; 1 và bán kính R = 3. Từ một điểm M thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu S tại điểm N. Tính khoảng cách từ M tới gốc tọa độ biết rằng MN = 4.
A. 19
B. 2 2
C. 22
D. 5
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64
Cho mặt cầu (S) có tâm I, bán kính R = 5. Một đường thẳng d cắt (S) tại hai điểm M, N phân biệt nhưng không đi qua I. Đặt MN = 2m Với giá trị nào của m thì diện tích tam giác IMN lớn nhất?
A. m = 5 2
B. m = ± 5 2 2
C. m = 5 2 2
D. m = 10 2
Trong không gian tọa độ Oxyz, cho hai điểm A(2;1;3), B(6;5;5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) có thể tích lớn nhất, biết rằng (P)+2x+by+cz+d=0 với b,c,d∈Z. Tính S=b+c+d.
A. S = -18.
B. S = -11
C. S = -24
D. S = -14
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A (2;1;3), B (6;5;5). Gọi (S) là mặt cầu đường kính AB Mặt phẳng (P) vuông góc với AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng (P): 2x + by + cz + d = 0 với b,c,d ∈ Z. Tính S = b + c + d .
A. S = 18
B. S = -18
C. S = -12
D. S = 24