Cho mặt cầu S : x - 3 2 + y + 2 2 + z - 1 2 = 100 và mặt phẳng α : 2 x - 2 y - z + 9 = 0 . Mặt phẳng α cắt mặt cầu (S) theo một đường tròn (C). Tìm tọa độ tâm J và bán kính r của đường tròn (C).
A. J(-1;2;3), r = 8
B. J(-1;2;3), r = 64
C. J(3;2;1), r = 64
D. J(3;2;1), r = 8
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 16 theo giao tuyến là đường tròn tâm H, bán kính r. Tìm tọa độ tâm H và bán kính r.
A. H 1 ; 2 ; 0 , r = 7
B. H 0 ; 0 ; 3 , r = 7
C. H 1 ; 2 ; 0 , r = 7
D. H 1 ; 2 ; 0 , r = 11
Trong không gian tọa độ Oxyz, cho mặt cầu (S): (x-2)2 + y2 + (z+1)2 = 9 và mặt phẳng (P): 2x-y-2z-3=0. Biết rằng mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính R của (C).
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x − y + 2 z + 1 = 0 và ( Q ) : 2 x + y + z − z = 0. Gọi (S) là mặt cầu có tâm thuộc Ox, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có duy nhất một mặt cầu (S) thỏa mãn điều kiện bài toán
A. r = 3 2 2 .
B. r = 10 2 .
C. r = 3 .
D. r = 14 2 .
Cho đường tròn tâm O có đường kính AB=2a nằm trong mặt phẳng (P). Gọi I là điểm đối xứng với O qua A. Lấy điểm S sao cho SI vuông góc với mặt phẳng (P) và SI=2a. Tính bán kính R của mặt cầu qua đường tròn tâm O và điểm S
A. R = a 65 4
D. R = a 65 16
C. R = a 5
D. R = 7 a 4
Trong không gian tọa độ Oxyz, cho mặt cầu S : x - 2 2 + y 2 + z + 1 2 = 9 và mặt phẳng P : 2 x - y - 2 z - 3 = 0 . Biết rằng mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính R của (C)
A. r = 2 2
B. r = 2
C. r = 2
D. r = 5
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y+z = 0 và hai điểm A(1;1;1),B(-3;-3;-3) Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tìm bán kính R của đường tròn đó.
A. R=4
B. R = 2 33 3
C. R = 2 11 3
D. R=6
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y-z-3=0 và hai điểm A(1;1;1), B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tìm bán kính R của đường tròn đó.
A. R = 4
B. R = 2 33 3
C. R = 2 11 3
D. R = 6
Trong không gian Oxyz cho các mặt phẳng (P): x-y+2z+1 = 0,(Q):2x+y+z-1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3
B. r = 2
C. r = 3 2
D. r = 3 2 2