Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian Oxyz, cho mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + ( z + 2 ) 2 = 4 và mặt phẳng (P): 4x-3y-m=0. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung
A. m=1
B. m=-1 hoặc m=-21
C. m=1 hoặc m=21
D. m=-9 hoặc m=31
Trong không gian Oxyz cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và mặt phẳng (P): 2x-2y+z+3=0. Gọi M (a;b;c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất. Khi đó:
A. a+b+c=8.
B. a+b+c=5.
C. a+b+c=6.
D. a+b+c=7.
Cho mặt phẳng P : x + y - z + 2 = 0 ; Q : x + 1 = 0 . Gọi ∆ = P ∩ Q . Xét d : x = - 1 y = t z = 1 + t t ∈ ℝ . Chọn khẳng định đúng
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y+z+3=0 và mặt cầu S : x − 1 2 + y + 3 2 + z 2 = 9 và đường thẳng d : x − 2 = y + 2 1 = z + 1 2 . Cho các phát biểu sau đây:
I. Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.
II. Mặt phẳng (P) tiếp xúc với mặt cầu (S)
III. Mặt phẳng (P) và mặt cầu (S) không có điểm chung
IV. Đường thẳng d cắt mặt phẳng (P) tại 1 điểm
Số phát biểu đúng là
A. 4
B. 1
C. 2
D. 3
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9, điểm A (0; 0; 2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là:
A. (P):x+2y+3z+6=0.
B. (P):x+2y+z-2=0.
C. (P):x-2y+z-6=0.
D. (P):3x+2y+2z-4=0.
Trong không gian Oxyz, cho hai điểm A(2;-2;4), B(-3;3;-1) và mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 3 ) 2 + ( z - 3 ) 2 = 3 . Xét điểm M thay đổi thuộc mặt cầu (S), giá trị nhỏ nhất của 2 M A → 2 + 3 M B → 2 bằng
A. 103
B. 108
C. 105
D. 100
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 1 và điểm A(2;2;2). Xét các điểm M thuộc (S) sao cho đường thẳng AM luôn tiếp xúc với (S). M luôn thuộc một mặt phẳng cố định có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + ( y - 2 ) 2 + z - 3 2 = 16 và các điểm A (1; 0; 2), B (-1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của (P) với mặt cầu (S) có diện tích nhỏ nhất.Khi viết phương trình (P) dưới dạng (P): ax + by + cz + 3 = 0. Tính T = a + b + c
A. 3
B. -3
C. 0
D. -2