Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian với hệ toạ độ Oxyz, xét các điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c , với abc > 0 và a + 2 b + 2 c = 6 . Biết rằng khi a, b, c thay đổi thì quỹ tích tâm mặt cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ điểm O tới mặt phẳng (P)
A. 1
B. 3
C. 2
D. 3
Trong không gian Oxyz, cho mặt cầu S : x - 2 2 + y - 4 2 + z - 6 2 = 24 và điểm A - 2 ; 0 ; - 2 . Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn ( ω ). Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa ω , kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn ω ' . Biết rằng khi ω và ω ' có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó
A. r = 6 2
B. r = 3 10
C. r = 3 5
D. r = 3 2
Trong không gian Oxyz, cho mặt cầu ( S ) : x - 2 2 + y - 4 2 + z + 6 2 = 24 và điểm A(-2;0;-2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn ω . Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa ( ω ) , kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn ( ω ' ) . Biết rằng khi ( ω ) và ( ω ' ) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó
A. r = 6 2
B. r = 3 10
C. r = 3 5
D. r = 3 2
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng P : x − y + z = 0 và mặt cầu (S) có tâm I 1 ; − 1 ; 1 và bán kính R = 3. Từ một điểm M thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu S tại điểm N. Tính khoảng cách từ M tới gốc tọa độ biết rằng MN = 4.
A. 19
B. 2 2
C. 22
D. 5
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(3;2;0), C(-1;2;4). Gọi M là điểm thay đổi sao cho đường thẳng MA, MB, MC hợp với mặt phẳng (ABC) các góc bằng nhau; N là điểm thay đổi nằm trên mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 1 3 . Tính giá trị nhỏ nhất của độ dài đoạn MN
A. 3 2 2
B. 2
C. 2 2
D. 5
Trong không gian Oxyz, cho mặt cầu S : x - 2 2 + y - 4 2 + z - 6 2 = 24 và điểm A(-2;0;-2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω) kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω'). Biết rằng khi hai đường tròn (ω), (ω') có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tìm bán kính r của đường tròn đó.
A. 6 2
B. 3 10
C. 3 5
D. 3 2
Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho A B = 3 , A C = 4 , B C = 5 và khoảng cách từ O đến mặt phẳng (ABC) bằng 1. Thể tích của khối cầu (S) bằng
A. 7 21 π 2
B. 13 13 π 6
C. 20 5 π 3
D. 29 29 π 6
Trong không gian với hệ tọa độ Oxyz, xét các điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c khác 0 và a + 2 b + 2 c = 6 . Biết rằng khi a, b, c thay đổi thì quỹ tích tâm mặt cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ điểm O đến mặt phẳng (P)
A. d = 1
B. d = 3
C. d = 2
D. d = 3