Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho mặt cầu (S) bán kính R. Hình nón (N) thay đổi có đỉnh và đường tròn đáy thuộc mặt cầu (S)  Tính thể tích lớn nhất của khối nón  (N)

A.  32 π R 3 81

B.  32 R 3 81

C.  32 π R 3 27  

D.  32 R 3 27

Cao Minh Tâm
15 tháng 5 2018 lúc 16:17

Đáp án A

Theo bài ra, ta có khối nón (N) nội tiếp khối cầu (S).

Giả sử khối nón (N) có đỉnh A, tâm đáy I như hình vẽ bên với h = I A  là chiều cao và bán kính đáy r = I K  

Tam giác AMK vuông tại K, có  I K 2 = I A . I M ⇔ r 2 = h 2 R − h

Suy ra  V N = 1 3 π r 2 h = π 3 h 2 2 R − h = π 3 . 2 R h 2 − h 3

Xét hàm số f h = 2 R h 2 − h 3  trên khoảng  0 ; 2 R → max f h = 32 R 3 27

 

Vậy thể tích cần tính là  V = π 3 . 32 R 3 27 = 32 π R 3 81


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết