Ta có: (am)n=am.am....am ( n thừa số am)
=am+m+m+...+m (n số hạng m)
=amn
Vậy (am)n=amn (đpcm)
Ta có am.n=am+m+...+m( n thừa số m)=am.am....am( n thừa số am)=(am)n ( đpcm)
Ta có: (am)n=am.am....am ( n thừa số am)
=am+m+m+...+m (n số hạng m)
=amn
Vậy (am)n=amn (đpcm)
Ta có am.n=am+m+...+m( n thừa số m)=am.am....am( n thừa số am)=(am)n ( đpcm)
Cho m,n thuộc N*, a thuộc Z. Chứng minh (a^m)^n=a^m.n
Bài 1: cho m,n thuộc N*, a thuộc Z.
Chứng minh rằng (am)n = am.n
So sánh (-2)3000 và (-3)2000
.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3)m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
Cho m , n thuộc Z . Chứng minh m.n (m2.n2) chia hết cho 3
Cho 2 phân số : M = \(\frac{3n+1}{4}\) ; N = \(\frac{18}{n+1}\)
a. Tìm n thuộc Z để M là hợp số ; N là số nguyên tố
b. Tìm n thuộc Z để M.N là số nguyên dương
c. Tìm n thuộc Z để M.N = -4\(\frac{1}{2}\)
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
Cho a^m=a^n (a thuộc Z; m,n thuộc N). Tìm các số m và n. , Cho a^m>a^n ( a thuộc Z; a>0; m,n thuộc N). So sánh m và n
Chứng minh :
Với a thuộc Z, n thuộc Z thì
a+a+a…+a =n chia hết cho a(n thừa số) TThank
Chứng minh rằng : m.n.(m4-n4) chia hết cho 30 với m, n thuộc N;m lớn hơn hoặc bằng n