\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)
\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)
=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c
\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)
\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)
=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c
cho a=m2+n2 , b=m2 - n2 , c=2mn
chứng minh rằng nếu m>n>0 thì a, b, c là độ dài ba cạnh của một tam giác vuông
cho m>n>0 và gọi a=m^2+n^2; b=m^2-n^2; c=2*m-n. chứng minh a,b,c là độ dài 3 cạnh của tam giác vuông
1, Áp dụng định lý Pytago. Chứng minh rằng nếu ta có a, b, c > 0 sao cho a = m2 + n2 ; b = m2 - n2 ; c = 2mn thì a, b, c là số đo 3 cạnh của tam giác vuông.
2, Các ạnh góc vuông của một tam giác vuông có độ dài a, b và diện tích bằng S. Tính các góc của tam giác vuông đó biết (a + b)2
3, Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác vuông (với a là độ dài cạnh huyền) thì các số x, y, z sau đây cũng là độ dài cạnh của tam giác vuông: x = 9a + 4b +8c ; y = 4a + b+ 4c ; z = 8a + 4b + 7c
Cho hình vuông ABCD có cạnh là a, gọi M và N là 2 điểm tùy ý trên AB và AD sao cho góc MCN=45 độ, vẽ tia Cx vuông góc với CN, Cx cắt AB tại E.
a, Chứng minh E là điểm đối xứng với N qua CM.
b, Chứng minh rằng đường cao vẽ từ C trong tam giác CMN bằng một hằng số và chu vi tam giác AMN =2a.
2 Cho tam giác ABC có góc A=20 đọ, B=80 độ, đường thẳng d là đường trung trực của AB. Trên AC lấy M sao cho AM=BC và gọi M' là điểm đối xứng M qua đường thằng d.
a, Chứng minh tam giác M'BC đều.
b, Tính góc BMC.
cho hình vuông ABCD có cạnh bằng a. các điểm M,N nằm trên các cạnh BC, CD ( M khác B,M khác C,N khác C,N khác D) sao cho góc MAN=45 độ. gọi E,F lần lượt là giao điểm của AM, AN trên BD
a) chứng minh chu vi tam giác MNC=2a
b) chứng minh rằng MF vuông góc với AN
C) tính diện tích tam giác AMN khi M,N lần lượt là giao điểm của tia phân giác của góc BAC với cạnh BC; tia phân giác của góc DAC với cạnh CD và a=4cm
Bài 1: Cho x; y \(\in Z\)và \(x^2+y^2=6\). Tìm giá trị nhỏ nhất của \(x^4+y^4\)
Bài 2: Cho \(a=m^2+n^2\); \(b=m^2-n^2\); \(c=2mn\) . CMR: Nếu m > n > 0 thì a; b; c là độ dài ba cạnh của một tam giác vuông.
Bài 1: Cho x; y \(\in Z\)và \(x^2+y^2=6\). Tìm giá trị nhỏ nhất của \(x^4+y^4\)
Bài 2: Cho \(a=m^2+n^2\); \(b=m^2-n^2\); \(c=2mn\) . CMR: Nếu m > n > 0 thì a; b; c là độ dài ba cạnh của một tam giác vuông.
Cho tam giác ABC vuông tại A. Biết AB = 15 cm, AC = 20 cm. Gọi M, N
lần lượt là trung điểm các cạnh AB, BC.
a) Tính độ dài MN và AN?
b) Gọi D là điểm đối xứng của A qua N. Chứng minh tứ giác ABDC là hình chữ nhật.
c) Gọi E là điểm đối xứng của N qua M. Chứng minh tứ giác ANBE là hình thoi.
Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Một đường thắng qua A, cắt cạnh BC tại M và cắt đường thẳng CD tại N. Gọi K là giao điểm của hai đường thẳng EM và BN. Chứng minh rằng: a) AB^2 = BD. BE b) Tam giác BEM đồng dạng với tam giác DNB c) KM là phân giác của góc BKC