Hình như thiếu đề nên cho cả n là số tự nhiên khác 0 nữa.
Xét n = 1 thì ta có:
\(m^2-1=\left(2x+1\right)^2-1=4\left(x^2+x\right)⋮8\)
Giả sử nó đúng tới n = k
\(\Rightarrow m^{2^k}-1=a.2^{k+2}=ay\)
\(\Rightarrow m^{2^k}=ay+1\)
Ta chứng minh nó đúng với n = k + 1
Hay \(\Rightarrow m^{2.2^k}-1⋮2^{k+2+1}\)
\(\Rightarrow\left(ay+1\right)^2-1⋮2y\)
Ta có: \(\left(ay+1\right)^2-1=a^2y^2+2ay\)
Mà \(\hept{\begin{cases}a^2y^2⋮2y\\2ay⋮2y\end{cases}}\)(do y là số chẵn)
\(\Rightarrow\)Nó đúng với n = k + 1.
Vậy theo quy nạp ta có điều phải chứng minh.