Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
My Nguyễn

Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)

Hãy so sánh M với 1/2

CHỈ CHO MÌNH CÁCH LÀM VỚI

LÀM ĐÚNG MÌNH TICK CHO.

Hoàng Lê Bảo Ngọc
8 tháng 10 2016 lúc 22:29

Ta so sánh từng số hạng : 

\(\frac{\sqrt{2}-\sqrt{1}}{1+2}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}=\frac{1}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}< \frac{1}{2}\)

\(\frac{\sqrt{3}-\sqrt{2}}{2+3}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(2+3\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{1}{\left(2+3\right)\left(\sqrt{2}+\sqrt{3}\right)}< \frac{1}{2}\)

..........................................................................................................................................................................................

\(\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}=\frac{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2014}\right)}=\frac{1}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2015}\right)}< \frac{1}{2}\)

Vì mỗi số hạng của M đều nhỏ hơn 1/2 nên M < 1/2

Hoàng Lê Bảo Ngọc
9 tháng 10 2016 lúc 15:56

Bài này mình làm chưa đúng nhé :) Để lát mình làm cách khác.


Các câu hỏi tương tự
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Nguyễn Bích Hằng
Xem chi tiết