Ta có :
\(M=\frac{n+1}{n+1}-\frac{3-8n}{n+1}+\frac{8}{n+1}\)
\(M=\frac{n+1-3+8n+8}{n+1}\)
\(M=\frac{\left(n+8n\right)+\left(1-3+8\right)}{n+1}\)
\(M=\frac{9n+6}{n+1}\)
\(M=\frac{9n+9-3}{n+1}\)
\(M=\frac{9n+9}{n+1}-\frac{3}{n+1}\)
\(M=\frac{9\left(n+1\right)}{n+1}-\frac{3}{n+1}\)
\(M=9-\frac{3}{n+1}\)
Để M là số nguyên thì \(\frac{3}{n+1}\) phải là số nguyên hay \(3\) chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-2\) | \(2\) | \(-4\) |
Vậy để M là số nguyên thì \(n\in\left\{-4;-2;0;2\right\}\)
Chúc bạn học tốt ~ ( chỗ nào ko hiểu thì hỏi nhé )