Bài 1: (2,5 điểm) Cho biểu thức P= (sqrt(a) + 1)/(sqrt(a) - 2) + (2sqrt(a))/(sqrt(a) + 2) + 2+5 sqrt a 4-a v dot ci a >= 0 a ne4
a) Rút gọn P.
b) Tính giá trị của P với a = 3 - 2sqrt(2)
c) Tìm a để P > 1/3
d) Tim a dé P = 2
M=\(\frac{\sqrt{x}+6}{\sqrt{x}+1}\)
a, Tìm các số nguyên a để M nguyên
b, tìm các số hữu tỉ để M nguyên
Giúp mình với
Cho M = \(\frac{\sqrt{a}+2}{\sqrt{a}-2}\). Tìm x hữu tỉ để M có giá trị nguyên
M=\(\frac{\sqrt{x}+6}{\sqrt{x}+1}\)
a, Tìm các số nguyên để M nguyên
b, Tìm các số hữu tỉ để M nguyên
Giúp mình với
Cho M = (√a + 6)/(√a + 1)= (√a +1 + 5)/(√a + 1)= 1 + 5/(√a + 1) a)Tìm a thuộc Z để M thuộc Z b) cmr với a = 4/9 thì là số nguyên c) Tìm các số hữu tỉ a để M là số nguyên
Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. tìm các số hữu tỉ a, b, c để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\)là số vô tỉ. tìm các số hữu tỉ a,b,c để: \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
Cho biểu thức P = ((2sqrt(x))/(sqrt(x) + 3) + (sqrt(x))/(sqrt(x) - 3) - (3x + 3)/(x - 9)) / ((2sqrt(x) - 2)/(sqrt(x) - 3) - 1) Tổng các giá trị nguyên của x để P
Tìm số nguyên m để \(\sqrt{m^2+m+23}\)là số hữu tỉ