Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Văn Thiệu

Cho \(\log_3a=\log_4b=\log_{12}c=\log_{13}\left(a+b+c\right)\). Hỏi \(\log_{abc}144\) thuộc tập hợp nào sau đây..?

A. \(\left\{\dfrac{7}{8};\dfrac{8}{9};\dfrac{9}{10}\right\}\) B. \(\left\{\dfrac{1}{2};\dfrac{2}{3};\dfrac{3}{4}\right\}\) C.\(\left\{\dfrac{4}{5};\dfrac{5}{6};\dfrac{6}{7}\right\}\) D.\(\left\{1;2;3\right\}\)

Giải giúp với . ths nha

Akai Haruma
7 tháng 7 2017 lúc 20:38

Lời giải:

Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)

\(\Rightarrow 13^t=3^t+4^t+12^t\)

\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)

Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)

Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)

Đáp án B


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lánh Vũ Thị Ngọc
Xem chi tiết
Trần Văn an
Xem chi tiết
thương mẩu99
Xem chi tiết
tiểu thư họ nguyễn
Xem chi tiết