Đáp án A
(ECD) chia A.BCD thành hai khối tứ diện A.ECD và E.BCD
Đáp án A
(ECD) chia A.BCD thành hai khối tứ diện A.ECD và E.BCD
Cho khối tứ diện ABCD, E là trung điểm AB. Mặt phẳng (ECD) chia khối tứ diện thành hai khối đa diện nào?
A. Hai khối tứ diện
B. Hai khối lăng trụ tam giác
C. Một lăng trụ tam giác và một khối tứ diện
D. Hai khối chóp tứ giác
Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau:
(I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều.
(III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau.
Số mệnh đề đúng là
A. 3
B. 2
C. 0
D. 1
Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương trên bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau:
(I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều
(III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
D. 0
Cho khối tứ diện ABCD, E là trung điểm AB. Mặt phẳng chia khối tứ diện thành hai khối đa diện nào?
A. Hai khối tứ diện
B. Hai khối lăng trụ tam giác
C. Một lăng trụ tam giác và một khối tứ diện
D. Hai khối chóp tứ giác
Tiến hành phân chia khối lập phương ABCD.A'B'C'D', hỏi có bao nhiêu cách phân
chia đúng trong các phương án sau:
i. Khối lăng trụ ABC.A'B'C', khối tứ diện AA'D'C' và khối chóp A.CDD'C'
ii. Khối tứ diện AA' B' D', khối tứ diện CC'D'B', khối chóp B'.ABCD
iii. Khối tứ diện A.A'B'C', khối chóp A.BCC'B' , khối lăng trụ ADC.A'D'C'
iv. Khối tứ diện AA'B'D', khối tứ diện C'CDB , khối chóp A.BDD'B', khối chóp C'.BDD'B'
A. 1
B. .2
C. 3
D.. 4
Cho khối lăng trụ ABC.A′B′C′ có thể tích V, đáy là tam giác cân, AB = AC. Gọi E là trung điểm cạnh AB và F là hình chiếu vuông góc của E lên BC. Mặt phẳng (C′EF) chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích của khối đa diện chứa đỉnh A.
A. 47 72 V
B. 25 72 V
C. 29 72 V
D. 43 72 V
Cho khối tứ diện ABCD, M là trung điểm AB. Mặt phẳng (MCD) chia khối tứ diện ABCD thành hai khối đa diện nào?
A. Hai khối lăng trụ tam giác
B. Hai khối chóp tứ giác.
C. Một lăng trụ tam giác và một khối tứ diện
D. Hai khối tứ diện.
Cho khối lăng trụ tam giác A B C . A ' B ' C ' . Gọi M, N lần lượt là trung điểm của BB' và CC'. Mặt phẳng (A'MN) chia khối lăng trụ thành hai khối đa diện. Gọi V 1 là thể tích của khối đa thức diện chứa đỉnh B và V 2 là thể tích khôi đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2
Cho khối lăng trụ tam giác A B C . A 1 B 1 C 1 có đáy là tam giác đều cạnh a , A 1 A = a 2 và A 1 A tạo với mặt phẳng (ABC) một góc 30 ° Tính thể tích khối tứ diện A 1 B 1 C A là
A. a 3 6 12
B. a 3 6 24
C. a 3 3 24
D. a 2 6 24