Cho tứ diện có thể tích bằng V. Gọi V’ là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số V ' V .
A. V ' V = 1 2 .
B. V ' V = 1 4 .
C. V ' V = 2 3 .
D. V ' V = 5 8 .
Cho khối tứ diện có thể tích V. Gọi V’ là thể tích khối đa diện có các đỉnh là trung điểm các cạnh của khối tứ diện đã cho. Tính tỉ số V ' V
A . V ' V = 2 3
B . V ' V = 1 4
C . V ' V = 5 8
D . V ' V = 1 2
Cho khối tứ diện có thể tích V. Gọi V' là thể tích của khối đa diện có các đỉnh là trung điểm của các cạnh tứ diện đã cho. Tỉnh tỉ số V ' V
A. 1 4
B. 5 8
C. 3 8
D. 1 2
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Nếu tứ diện ABCD có thể tích V thì thể tích của đa diện có 6 đỉnh là 6 trung điểm các cạnh tứ diện bằng:
A. V/4
B. V/2
C. V/3
D. 2V/3
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABCD
A. V = a 3 2 12
B. V = a 3 11 24
C. V = a 3 3 4
D. V = a 3 8
Cho khối tứ diện ABCD có thể tích V và điểm E trên cạnh AB sao cho A E = 3 E B . Tính thể tích khối tứ diện EBCD theo V
A. V 4
B. V 3
C. V 2
D. V 5
Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N lần lượt là trung điểm các cạnh AD, BD. Gọi P là điểm trên cạnh AB sao cho P B P A = 2018 2017 . Tính thể tích V của khối tứ diện PMNC.
A. 27. 2 12
B. 9.2018. 2 16.2017
C. 9. 2 16
D. 9.2017. 2 16.2018