Đáp án A.
∆ ABC cân có: A B C ^ = 60 0 => ∆ ABC đều cạnh a
Đáp án A.
∆ ABC cân có: A B C ^ = 60 0 => ∆ ABC đều cạnh a
Cho khối lăng trụ đứng ABC.A'B'C' có BB'=a đáy ABC là tam giác vuông cân tại B và AC= a 2 . Tính thể tích V của khối lăng trụ đã cho .
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, Tính theo a thể tích khối trụ ABC.A'B'C'
Cho lăng trụ đứng ABC.A'B'C', có đáy ABC là tam giác vuông tại A, AB = 3a; AC = 4a, cạnh bên AA' = 2a. Tính thể tích của khối lăng trụ .
A. 12 a 3
B. 4 a 3
C. 3 a 3
C. 6 a 3
Cho khối lăng trụ đứng ABC.A’B’C’ có BB’ = a, đáy ABC là tam giác vuông cân tại B, AB = a. Tính thể tích V của khối lăng trụ.
Cho khối lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại A, AC = AB = 2a, góc giữa AC' và mặt phẳng (ABC) bằng 30 0 . Thể tích khối lăng trụ ABC.A'B'C' là
A . 4 a 3 3
B . 4 a 3 3 3
C . 2 a 3 3 3
D . 4 a 2 3 3
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân đỉnh C, A'C = a. Gọi x là góc giữa hai mặt phẳng (A'CB) và (ABC) để thể tích khối chóp A'.ABC lớn nhất. Tính thể tích lớn nhất của khối chóp A'.ABC theo a
A. a 3 3 3
B. a 3 3 9
C. a 3 3 27
D. a 3 3 81
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB=a, AC =a 3 và BB'C'C là hình vuông. Khoảng cách giữa hai đường thẳng AA' và BC' là
A. a 3 2
B. 3 a 2 4
C. a
D. a 3
Cho khối lăng trụ ABC.A′B′C′ có đáy là tam giác vuông cân tại A, BC = 2a và hình chiếu vuông góc của A′ lên mặt phẳng (ABC) trùng với trung điểm cạnh BC, góc giữa AA′ và mặt đáy bằng 60 ° . Thể tích khối lăng trụ đã cho bằng
Cho hình lăng trụ đứng ABC.A'B'C'. Cạnh bên AA' = a, ABC là tam giác vuông tại A có BC = 2a, AB = a 3 . Tính khoảng cách từ đỉnh A đến mặt phẳng (A'BC)
A . a 21 7
B . a 21 21
C . a 3 7
D . a 7 21