Cho khối chóp tứ giác đều S.ABCD có ABCD là hình vuông cạnh 2 a . Góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60 o . Tính bán kính R của mặt cầu ngoại tiếp khối chóp S.ABCD ?
A. R = 2 a
B. R = a
C. R = 2 3 3 a
D. R = 3 2 a
Cho hình chóp tứ giác đều S . A B C D có cạnh đáy bằng a tâm O. Gọi M, N lần lượt là trung điểm của SA và BC. Góc giữa đường thẳng MN và mặt phẳng A B C D bằng 60 0 . Tính cosin góc giữa đường thẳng và mặt phẳng ( S B D ) .
Cho hình chóp tứ giác đều S.ABCD có ABCD là hình vuông cạnh 2 a . Góc giữa đường thẳng SA và mặt phẳng (SBD) bằng 30 o . Tính bán kính R của mặt cầu ngoại tiếp khối chóp S.ABCD ?
A. R = 2 a
B. R = 6 3 a
C. R = 2 3 3 a
D. R = 3 2 a
Cho hình chóp tứ giác đều S.ABCD có đáy hợp với cạnh bên một góc 45 o . Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD bằng 2 Thể tích khối chóp là?
A. 3 3
B. 4 3 3
C. 3 2 4
D. 4 2 3
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, ∠ A B C = 60 ° Hình chiếu vuông góc của S lên mặt phẳng đáy là trọng tâm của tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, SD. Biết cosin góc giữa hai đường thẳng CN và SM bằng 2 26 13 Thể tích khối chóp S.ABCD bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2, cạnh bên SA vuông góc với đáy, góc giữa cạnh bên SC và đáy bằng 60°. Tính thể tích của khối trụ có một đáy là đường tròn ngoại tiếp hình vuông ABCD và chiều cao bằng chiều cao của khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có đường chéo bằng 2 a, cạnh SA có độ dài bằng 2a và vuông góc với mặt phẳng đáy. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD?
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Gọi M là điểm đối xứng vưới C qua D và N là trung điểm của cạnh SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai khối đa diện ( H 1 ) và ( H 2 ) trong đó ( H 1 ) chứa điểm C. Thể tích của khối ( H 1 ) là
Cho khối chóp S.ABCD có đáy là hình vuông, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84 π ( cm 2 ) . Khoảng cách giữa hai đường thẳng SA và BD.